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Abstract
1
 

This paper presents two approaches related to the 

area of computer vision, where shape modelling 

(representation) is an essential part of every system. 

Specifically, the problem of fitting ellipse fitting is 

approached. The developed methods deal with 

elongated round-ended shapes, and represent them 

with ellipses based on medial representation. The 

evaluation shows that the proposed approaches 

outperform the state-of-the-art techniques on the 

examined dataset. 

1. Introduction 

Representing the given shape with simple primitives that 

preserve its important structural characteristics is a highly 

researched topic that has applications in pattern 

recognition, surveillance and monitoring, computer 

graphics, mechanical engineering etc. [5]. Particularly, 

ellipses contain information about the elongation of the 

shape and orientation of its major axis [3].  

The remaining of the paper is structured in the following 

way. Section 2 makes a brief introduction to the domain 

of shape representation, and is followed by Section 3, 

where the existing approaches to ellipse fitting are 

described.  Section 4 provides a summary of the proposed 

techniques [2] and [3]. Section 5 discusses the 

experimental results by comparing state-of-the-art 

approaches [7] and [11] with the proposed [2] and [3]. 

2. Recall on shape representation 

Shape plays a special role in computer vision [1]. By 

definition, 2D shape is a binary representation of an 

object, where 1s correspond to its extent, and 0s – to the 

background, or vice versa. As an example, see Figure 1 

which shows an image of the diatom
2
 (a), and its 

shape (b).  

Shape modelling, or alternatively shape representation, is 

a fundamental concept in the domain of computational 

shape analysis. It is defined as a process of describing an 
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object of interest w.r.t. preservation of its important 

characteristics.  

  

(a)                                       (b) 

Fig. 1. Image of a diatom
2
 (a), and its corresponding 

shape (b) 

The approaches to shape representation can be classified 

to contour-based, since dealing with the outline of an 

object, and to region-based, since taking the outline as 

well as inner points into consideration [1]. The developed 

approaches [2], [3] belong to the second group of 

methods, and use as a basis the Distance Transform [16].  

3. Overview of approaches for ellipse fitting 

Hereafter, the problem of shape representation with 

ellipses will be considered from the perspective of fitting 

the ellipses to the given object. The existing literature 

distinguishes the following ways to tackle it: 

(a) find the minimum ellipse that covers the      whole 

object; 

(b) find the maximum ellipse that is inside the 

object; 

(c) minimize the total deviation between the      

object and an ellipse; 

(d) find a set of ellipses covering the given 

object. 

Depending on the category of the approach, 

discussed in Section 2, the object will be defined 

by the boundary of a shape (for contour-based), and/or as 

a shape (for region-based).  

Following the categorization of Wong et al. [5], from 

conceptual perspective there exist three major branches 

of ellipse-fitting methodologies: (m1) Least-Squares - 

based, (m2) voting scheme-based, (m3) uncategorised, 

statistical or heuristic, combined techniques. The 

majority of them descend either from groups (1), or (2).  

The idea of Least-Squares (LS) is to minimize some error 

function that measures the distance between points of the 

predicted ellipse and the points of the original data. The 

http://rbg-web2.rbge.org.uk/ADIAC/pubdat/downloads/public_images.htm
http://rbg-web2.rbge.org.uk/ADIAC/pubdat/downloads/public_images.htm
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advantage of this approach lies in its linearity which 

enables real-time performance. The disadvantage is the 

sensitivity to noise and outliers that highly impact the 

result. Various metrics were proposed to enhance the 

robustness of the method. The substantive comparison of 

error of fit (EOF) functions was conducted by Rosin and 

can be found in [6]. Fitzgibbon et al. [7] made a crucial 

impact to LS. Direct least square (DLS) fitting considers 

elliptical constraint in normalization factor, and solves 

the problem in a non-iterative manner. It raised the new 

wave of research in this direction [8], [9], [10]. 

In contrast, voting scheme-based (clustering, grouping) 

approaches are stable to noise, though they are 

computationally more expensive. One of the well-studied 

methods in this area is the Hough transform (HT). Its 

ground principle is analogous to the locus. Points that 

correspond to the given shape contribute to the bin with 

the same shape parameters in an alternative space, and 

then the bins which are above the threshold are selected. 

The fact that HT is robust, but computationally expensive 

and time-consuming motivates researchers to further 

develop this approach, by using the geometrical 

properties of points [13], tangents of ellipses [11], 

symmetry [12], or by lowering the resolution of the data 

with image pyramids [14].   

While considering the uncategorized techniques, it is 

worth mentioning hybrid approaches. They make an 

attempt to combine the advantages of multiple schemes: 

LS and HT [11], [13]; Watershed Transformation (WT) 

with LS [15].  

4. Methods 

In general, the developed approaches [2] and [3] employ 

the function of thickness change as a descriptor for 

splitting the given shape into elliptical parts. This fact fits 

them to the (m3) methodological group of methods. 

The idea behind [2] is that implicit representation of an 

ellipse requires only three parameters to compute the 

positions of its points. Namely, these parameters are the 

lengths of semi-major and semi-minor axes, and position 

of the ellipse centre. For this purpose Gabdulkhakova et 

al. proposed to analyse the thickness profile, which is a 

1D function that computes local thickness of the shape 

along its, medial representation w.r.t. some distance 

measure.  

Medial representation, or alternatively skeleton, can be 

described as a set of points inside the region that are 

equidistant from its borders, and correspond to the 

centres of maximum circles fitted inside this region. The 

traditional approaches to obtain a skeleton include, but 

are not limited to Distance Transform (DT) [16], Medial 

Axis Transformation (MAT) [4], and thinning [17]. In 

case of [2], DT with City-Block distance metric was 

selected to approximate the local thickness of the shape 

since: (1) it provides not only the positions of the skeletal 

points, but also their distance to the borders; (2) City-

Block is a D4 metric, and produces the thickness values 

closer to reality than Euclidean, which is D8.     

The parameters of the ellipse are detected from the 

thickness profile with the help of the properties of its first 

and second derivatives. For a single ellipse, thickness 

profile has a distinct point with the highest value, local 

maximum, and two points with the low values, local 

minima. In this manner, if the centres of multiple ellipses 

do not coincide, then the local maxima of shape’s profile 

indicate the positions of their centres, and the 

corresponding DT value equals the length of their semi-

major axes. Local minima are assumed to be the points 

on the ellipse, and are employed for computing the length 

of their semi-minor axes w.r.t. implicit representation of 

an ellipse.  

In addition, the transition between two ellipses within one 

shape does not always cause local extrema. Therefore, 

second derivative is intended to detect the point of the 

profile, where its slope was sufficiently changed. 

The same approach for finding ellipse parameters was 

employed in [3], with the difference that the skeleton was 

obtained with thinning [17], and the thickness profile was 

represented by longitudinal and latitudinal values along 

this skeleton. The later representation has an advantage of 

being invariant to deformations.   

5. Discussion of the results 

In experimental part we compare the proposed 

approaches [2], [3] with the state-of-the-art methods 

[7]
3
and [11]

4
. The test data contains images from diatom 

dataset
2
, as well as synthetically generated data.   

Synthetic data is represented by challenging cases of the 

shapes, such as very elongated (d), with high negative 

curvature (a), high positive curvature (f), and ellipses 

which are approximated by polygons (e). The idea is to 

check how different methods cope with extreme 

situations. 

Diatoms that compound the dataset are symmetric objects 

that either have elliptical shape, or can be represented by 

multiple overlapping ellipses. The motivation to use these 

data is to check the possibility of each method not only to 

find a best single ellipse fit, but also to approximate the 

given shape with several ellipses.  

As an input data, methods [7] and [11] received the set of 

boundary points of the shape, whereas our method 

employed the whole region of the shape. 

The results are shown in Fig. 2. First row (a) – (f) 

correspond to the given shape, where (b) and (c) are from 

diatom dataset, and the remaining are synthetically 

generated. Second (a1) – (f1), third (a2) – (f2), and 

forth (a3) – (f3), fifth (a4) – (f4) rows demonstrate the 

results of Fitzgibbon et al. [7], Cicconet et al. [11], 

Gabdulkhakova et al. [2], and Gabdulkhakova et al. [3] 

correspondingly. In figures (a1) – (f1) and (a2) – (f2) the 

resultant fits are highlighted with yellow. In figures (a3) 

– (f3) the original region is shown in white, green ellipses 

                                                           
3
 Implementation of the algorithm is adopted from 

http://research.microsoft.com/en-s/um/people/awf/ellipse/fitellipse.html 
4
 Implementation of the algorithm is adopted from 

https://bitbucket.org/cicconet/triangles_matlab/src 
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are detected by the proposed algorithm [2], blue ellipses 

are fitted w.r.t. to the points of medial representation that 

lie between focal points of the green ellipses. 

The general difference between compared approaches is 

that [7] and [11] focus on minimizing the total deviation 

between given shape and an ellipse fit, allowing the latter 

not to strictly be inside the contour. In contrast, the 

methodology described in [2] detects such parameters of 

ellipse that it will be enclosed in a given region.     

Evaluating by the number of fitted ellipses shows that, on 

one hand, DLS does not consider the case of several 

overlapping ellipses. Thus, given a composite object it 

fits a single ellipse with parameters that minimize the 

distance measure (a1), (b1), (c1) and (f1). On the other 

hand, for synthetically generated ellipse (d1) and ellipse 

approximated with the polygons (e1) the algorithm shows 

very good results. In contrast, hybrid approach [11] is 

able to find multiple ellipses that can fit the shape. 

Method requires the specification of several parameters 

by user such as estimated maximum number of ellipses, 

range of semi-major and semi-minor axes lengths. In 

present experimental setup it does not produce stable 

results – the algorithm provides different fits for the same 

input data. Moreover, elongated ellipse is not 

detected (d2). As opposed to [11] the proposed method 

does not require a priori knowledge about the parameters 

and number of ellipses. In comparison to [7], it is 

possible to fit multiple ellipses inside the given contour. 

The performance can be further improved by substituting 

the DT with more robust thickness computation method. 

The results of [3] highly depend on the original skeleton, 

since computing the latitudinal values as normal to 

skeleton at the corresponding point. Therefore, it is more 

dependent on small perturbations (d4) and polygonal 

approximations (e4) than [2].    
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Fig. 2. Comparison of the results produced by [7], [11], [2], and [3] 

 


