Информационные технологии интеллектуальной поддержки принятия решений, Информационные технологии интеллектуальной поддержки принятия решений 2019

Размер шрифта: 
Neural Networks For Diagnostics Of Metal Cutting Machine Modules
Kamil Masalimov, Rustem Munasypov

Изменена: 2021-02-21


The work is devoted to solving the problem online diagnostics of machine tools modules using data-based models. The authors propose a diagnostic method that includes models based on long short-term neural memory networks as a repository of frequency reference values. Data for training neural networks is a frequency spectrum reflecting the oscillations of the tool and the workpiece normal to surfaces caused by the presence of a manufacturing defect in the module element of a metalworking machine. Neural network model with long short-term memory are used for approximation the nonlinear frequency characteristics. For classification of module defects proposed a second neural network that compare the neural network model of the reference spectrum with the spectrum obtained from the actual quality parameters of the part in real time, determine the sources of defects. To evaluate the effectiveness of the method, a series of experiments were carried out with the definition of defective machine modules. An experimental result of the application of proposed method is given.


[1] . Randall R. B., Antoni J. Rolling element bearing diagnostics – a tutorial. Mechanical Systems and Signal Processing, Vol. 25, 2011, p. 485-520.

[2] Meroño P. A., Gómez F. C., Marín F. Measurement techniques of torsional vibration in rotating shafts. CMC, Vol. 44, Issue 2, 2014, p. 85-104.

[3] Jaouher Ben Ali, Brigitte Chebel Morello, Lotfi Saidi, Simon Malinowski, Farhat Fnaiech. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing, Vol. 56, 2015, p. 150- 172.

[4] Avakyan, V.A., et al. Sposob diagnostiki sostoyaniya metallorejutschego stanka [Method for diagnosing the condition of metal-cutting machine]. Patent USSR, no. SU144580A1 B23Q1500, 15.10.1987.

[5] Etin, A.O., et al. Sposob diagnostiki ehlementov zamknutoj dinamicheskoj sistemy SPID [A method for diagnosing the elements of a closed dynamic system SPID]. Patent USSR, no. SU1296370A1 B23Q15/00, 15.03.1987.

[6] Sankin, Yu.N., et al. Sposob diagnostiki ehlementov zamknutoj dinamicheskoj sistemy tokarnogo stanka [Method of diagnostics of elements of closed dynamic machine system]. Patent RF, no. RU2146585, 20.03.2000.

[7] Yurkevich, V.V.. Ustrojstvo diagnostiki tokarnyh stankov po parametram tochnosti izgotavlivaemoj detali [Device of diagnostics of lathe machines according to the parameters of the accuracy of the produced detail]. Patent RF, no. RU2154565, 14.10.1999.

[8] Rozhkov, S.V.; Trushin, N.N.; Shadskij, G.V. “Monitoring of the technical condition of spindle assemblies of machine tools” Izvestiya TulGU Tekhnicheskie nauki 2016 № 8 Ch. 2.

[9] Yurkevich, V.V., et al. Sposob diagnostiki shpindelnogo uzla [method of diagnostics of spindle knot]. Patent RF, no. RU2124966, 20.01.1999.

[10] Munasypov R. A., Masalimov K. A. “Neural network models for diagnostics of state of complex technical objects on the example of the process of elecrochemical treatment” Proceedings of the 2nd International Ural Conference on Measurements (UralCon 2017), South Ural University (national research university), Chelyabinsk, Russian Federation, October 16-19, 2017, pp. 156-160.

[11] K. A. Masalimov, R. A. Munasypov “Neural-Network Diagnostics of Electrochemical Machining” Russian Engineering Research, 2017, Vol. 37, No. 9, pp. 817-820. Allerton Press, Inc., 2017. [12] Yoshua Bengio, "Learning Deep Architectures for AI", 2009, Foundations and Trends in Machine Learning: Vol. 2: No. 1, pp 1- 127. http://dx.doi.org/10.1561/2200000006

[13] Application of intelligent data-driven models in the adaptive control, monitoring and diagnosis system of the robotic cutting machine / Munasypov R. A., Masalimov K. A., Fecak S. I., Idrisova U. V. // Proceedings of the Workshop on Computer Science and Information Technologies (19thCSIT’2017), Germany, Baden-Baden, October 8- 10, 2017, Volume 2, pp. 93-98.

[14] MORI SEIKI NL1500SY/500. [Online]. Available: https://www.machinetools.com/en/models/mori-seiki-nl1500syslash500

[15] DMG Mori: NL Series cutting machines. [Online]. Available: https://cn.dmgmori.com/blob/166046/3b6fed7a5ae400b8d5cdbce2fd5 2d 6d6/pt0uk15-nl-pdf-data.pdf

[16] Omelchak, A[leksandr]; Fecak, S[.I.] & Idrisova, U[.V.] (2016). Dynamic Processesina Мachine-Tool at High-SpeedMachining, Chapter 16 in DAAAM International Scientific Book 2016, pp.175- 182, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-09-9, ISSN 1726-9687, Vienna, Austria DOI:10.2507/daaam.scibook.2016