
Proceedings of the 7th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making

Support", May 28-30, Ufa – Stavropol- Khanty-Mansiysk, Russia, 2019

239

LLVM-based C to DEPM transformation tool: New

functionality and performance improvements

Viacheslav Vidineev

Faculty of Computer Science and

Robotics

Ufa State Aviation Technical University

Ufa, Russia
vidineev.vyachesla01@ugatu.ac.ru

Klaus Janschek

Institute of Automation, Faculty of

Electrical and Computer Engineering

Technische Universität Dresden

Dresden, Germany

klaus.janschek@tu-dresden.de

 Tagir Fabarisov

Institute of Automation, Faculty of

Electrical and Computer Engineering

Technische Universität Dresden

Dresden, Germany
tagir.fabarisov@tu-dresden.de

Andrey Morozov

Institute of Automation, Faculty of

Electrical and Computer Engineering

Technische Universität Dresden

Dresden, Germany

andrey.morozov@tu-dresden.de

Nafisa Yusupova

Faculty of Computer Science and

Robotics

Ufa State Aviation Technical University

Ufa, Russia
yussupova@ugatu.ac.ru

Abstract— Recently we have presented a tool for the Error

Propagation Analysis (EPA) of the safety-critical software

using the developed method for the transformation of the

source code to the Dual-graph Error Propagation Model

(DEPM) based on the Low-Level Virtual Machine (LLVM)

compiler framework. This tool enables the automatic analysis

of the LLVM supported front-ends such as C-code. In order to

analyze functions, basic blocks, control and data flow

structures, the source code is being transformed into LLVM

Intermediate Representation (IR) which contains information

required for the generation of a corresponding DEPM for

further analysis.

The DEPM is a stochastic framework developed by our

research team. The DEPM captures system properties relevant

to the error propagation analysis such as control and data flow

structures, transition probabilities and reliability

characteristics of single components, in this case, LLVM

instructions. The DEPM helps to estimate the impact of a fault

in a particular instruction on the overall system reliability, e.g.

to compute the mean number of erroneous values in a critical

system output during given operation time.

This paper is devoted to the improvements of the

transformation tool that have been successfully implemented

and tested. The three key extensions of the tool are (i) the

support of the new version of DEPM, (ii) the generation of the

control flow using the LLVM IR labels instead of the elements

execution sequence, and (iii) the generation of the error

propagation commands for instruction elements using

probabilistic parametric methods. The paper describes all the

steps of development of the improvements from design to

implementation. In addition, the results of the performance

evaluation are presented.

Keywords—LLVM, transformation methods, software reliability,

error propagation analysis.

__

Proceedings of the 7
th

 All-Russian Scientific Conference

"Information Technologies for Intelligent Decision

Making Support", May 28-30, Ufa – Stavropol- Khanty-

Mansiysk, Russia, 2019

I. INTRODUCTION

Software reliability analysis is an important part of the
system-level dependability evaluation for any safety critical
industrial domain. Nowadays, one of the main critical part of
any industrial system is a software. Due to the high
complexity of the software structures, any data error, e.g.
caused by a random bit flit in CPU or RAM, could result in a
data error and propagate through the entire system and
eventually lead to system failures. Therefore, our main goal
is to evaluate whether a data error will reach a critical system
output with certain probability during the system operation.
For that Error Propagation Analysis (EPA) we have used a
mathematical abstraction Dual-graph Error Propagation
Model (DEPM). This paper presents a new version of the
tools for the automatic generation of the DEPM models from
the source code.

The reminder of this paper is structured as follows.
Section 2 provides the overview of the background DEPM
and LLVM technologies. Section 3 presents an overview and
technical details of the proposed transformation method.
Section 4 describes implemented improvements of the tool.
One of the most necessary improvement is the generation of
DEPM models in the new format in order to work with
newest versions of OpenErrorPro. This improvement is
described in Section 4-A. A new method for building the
control flow between basic blocks is presented in the Section
4-B. The evaluation of the fault probabilities was left out of
the scope of the research focus in the previous work. In this
work we propose a new parametric method for the fault
probability evaluation. The description of the method is
provided in the Section 4-C. Finally, Section 5 provides the
results of the functional and performance evaluation of a new
version of the tool and the conclusion

II. STATE OF THE ART

A. DEPM

Fault activation and the error propagation are specified
using probabilistic conditions of the elements, see the
conditions of A, B, and C in the right part of Fig. 1. During
the execution of an element, faults can be activated and
occurred errors propagate to its output data. For instance, in
the element A, faults can be activated with probability 0.1,
defined in the conditions of A (see Fig. 1), and occurred

LLVM-based C to DEPM transformation tool: New functionality and performance improvements

240

errors propagate to its output data d1 and d3. The error
propagation probabilities for each element are defined also
using probabilistic conditions. The errors can propagate from
the inputs to the outputs. For instance, the conditions of the
element B specify that the element B does not activate faults,
but the errors can propagate from d1 to d2 with the
probability 0.9.

Fig. 1. A simple DEPM example and the conditions of the elements [4].

The DEPM allows the computation of several reliability
metrics, such as the mean number of errors (Nerr) and
probability of errors (Perr) in selected data storages. Nerr
stands for the average number of erroneous values in a data
storage, and Perr is the probability of an error in a data
storage during the system execution. For instance, the
evaluated Nerr in the data storage output during 100 steps
(execution of one element is one step) is equal to 3.630, and
the Perr is 0.958, as shown in Fig. 1. The computed
reliability metrics are important measures for the system
analysis, particularly for the reliability assessment and
should comply with system requirements.

The OpenErrorPro [3, 4] is an analytical software
developed in our lab that supports the system analysis with
the DEPM. On the input there are baseline models that
describe the target system. Several parsers transform the
baseline models into the DEPM models [5].

B. LLVM

LLVM (Low Level Virtual Machine) is a collection of
modular and reusable compiler and toolchain technologies. It
provides a source and target-independent optimizer, as well
as a code generation support for a number of CPUs [6].

Fig. 2. LLVM use case.

These libraries are built around an assembly-like low-level
code representation known as the LLVM Intermediate
Representation (LLVM IR). The LLVM IR is a
representation in-between a high-level language and a low-
level machine code. The LLVM Pass Framework is an
important part of the LLVM system. It performs the
transformations and optimizations which compose the
compiler, as well as building of the analysis results that are
used for the transformations, moreover, passes are
structuring technique for compiler code. According to the
task we have developed a pass to extract required data for a
DEPM.

III. TRANSFORMATION

Fig. 3. An overview of the transformation process.

Figure 3 shows an overview of the transformation
process. Rectangles represent data and rounded rectangles
represent activities. The process is automated and performs
by a single script that calls LLVM tools as well as the DEPM
pass and the python script to generate the DEPM. The
process consists the following three steps: (1) Compilation of
the C code into the LLVM IR (see LLVM in Fig 3), (2)
Execution of the generated LLVM IR code with a developed
DEPM pass (see Run in Fig 3), and (3) generation of DEPM
xml file using a developed python script (see Python in Fig
3).

A. Compilation of the given C code into the LLVM IR using

Clang

Clang is a language front-end and the LLVM compiler
infrastructure for languages in the C language family (C,
C++, Objective C/C++, OpenCL, CUDA, and RenderScript)
[6]. In this transformation tool Clang is used for the LLVM
IR code generation for the DEPM pass. Listings 1 and 2
show an example of a simple function that compares two
numbers and returns the biggest one in C code and LLVM IR
code respectively.

Listing 1. C code.

int max(int a, int b) {

 if (a > b) {

 return a;

 } else {

 return b;

 }

}

Proceedings of the 7th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making

Support", May 28-30, Ufa – Stavropol- Khanty-Mansiysk, Russia, 2019

241

The generated LLVM IR code will be used for the

parsing of data and generation of the basic blocks execution

sequence of.

Listing 2. LLVM IR code.

B. Running the generated LLVM IR code with the DEPM

pass.

Listing 3. An example of the «model.json» file.

The pass iterates through the generated LLVM IR code
and parses the required information for the DEPM. It
generates «model.json» file which contains data in JSON

format in order to keep the structure of the DEPM, e.g.
function contains basic blocks, basic block contains
instructions, etc. Listing 3 provides an example of the file
generated from the LLVM IR code presented at the Listing
2.

Due to the restriction of the OpenErrorPro toolset, the
pass generates a unique name for all the elements, e.g. “bb”
becomes “F0_max_BB0”, “alloca” –
“F0_max_BB0_INS0_alloca”, etc. For this instruction, the
pass takes “%tmp” as an output data, “Constant0” as an input
data (align 4 gives this allocation 4-byte alignment, i.e. the
stack pointer will be on a 4 byte aligned address), and control
flow transition to the next instruction. Control flow
transitions between basic blocks are located in “br”
instruction in the end of the basic block.

Additionally, in case when it is necessary to calculate a
transition probability for some elements, the pass generates
file “sequence.txt”, which contains basic block’s identifiers
in their execution order.

C. Creation of the DEPM

At the final step of the transformation files “model.json”

and “sequence.txt” are being used as inputs in order to

create the DEPM using OpenErrorPro’s API. This process

consists of the following steps:

1) Create a model for each function.

2) Add basic blocks to corresponding models and create a

sub model for every basic block;

3) Add instructions and their control flow to

corresponding basic blocks.

4) Add instruction’s and basic block’s data and data flow.

5) Add basic block’s control flow.

6) Set the control flow and commands for elements that

have two or more control flow outputs using the method

introduced in [8].

7) Set the error propagation commands for instructions.

8) Place all the models to their call instruction’s sub

model.
The Python script parses the input, performs actions 1-8,

and saves the result in XML format. The output file with
DEPM model is ready for further analysis with
OpenErrorPro.

IV. IMPROVEMENTS

Since the introduction of the method in [1], there were

significance changes in the DEPM storage XML format [2].

Also, the new version of LLVM has been released.

Therefore, the following improvements of the C to DEPM

transformation tool have been implemented.

A. Generation of the DEPM in the new format

In order to analyze a source code with the latest version
of OpenErrorPro, a DEPM xml file must be generated in the
new format. Previous format (Listing 4) stored all elements,
data, control flow and data flow arcs in the same main
model regardless of whether they are members of a sub-
model or not. For that reason, sub-level elements contained
an attribute «host» with the value being a name of the host
model. Elements of the DEPM saved in the new format
(Listing 5) could contain an attribute «compound»
designating that an element contains a sub-model.

define dso_local i32 @max(i32 %arg, i32 %arg1) {

bb:

 %tmp = alloca i32, align 4

 %tmp2 = alloca i32, align 4

 %tmp3 = alloca i32, align 4

 store i32 %arg, i32* %tmp2, align 4

 store i32 %arg1, i32* %tmp3, align 4

 %tmp4 = load i32, i32* %tmp2, align 4

 %tmp5 = load i32, i32* %tmp3, align 4

 %tmp6 = icmp sgt i32 %tmp4, %tmp5

 br i1 %tmp6, label %bb7, label %bb9

bb7: ; preds = %bb

 %tmp8 = load i32, i32* %tmp2, align 4

 store i32 %tmp8, i32* %tmp, align 4

 br label %bb11

bb9: ; preds = %bb

 %tmp10 = load i32, i32* %tmp3, align 4

 store i32 %tmp10, i32* %tmp, align 4

 br label %bb11

bb11: ; preds = %bb9, %bb7

 %tmp12 = load i32, i32* %tmp, align 4

 ret i32 %tmp12

}

model.json

{

 "max": {

 "F0_max_BB0": {

 "F0_max_BB0_INS0_alloca": {

 "call": "",

 "cf_outputs": [

 "F0_max_BB0_INS1_alloca"

],

 "df_inputs": [

 "max_Constant0"

],

 "df_outputs": [

 "max_%tmp"

]

 },

 …

 },

 …

 }

}

LLVM-based C to DEPM transformation tool: New functionality and performance improvements

242

Respectively, sub-models are represented as independent
XML nodes.

Listing 4. An example of DEPM model saved in the old format

Listing 5. An example of DEPM model saved in the new format.

For this reason, we have modified the LLVM pass that
generates DEPM data containers in accordance with the new
DEPM format. Previously, C to DEPM transformation tool
ran two LLVM passes, first being the element generator
(Listing 6) and the second being the data list generator
(Listing 7).

Listing 6. An example of generated «elements.txt» file.

Listing 7. An example of generated «datas.txt» file.

The new version of the C to DEPM transformation tool

runs only one LLVM pass that generate one file which

contains information about both elements and data in JSON

format (Listing 3). The structure of this file is follows the

new version of DEPM and represented in more convenient

for further processing way, which affects the performance

significantly.

Another noteworthy improvement is a support of the

new OpenErrorPro API for generation of the output XML

file containing DEPM model. It uses Python’s standard

library to work with an XML, which makes the tool more

independent of the possible format changes.

B. Generation of the control flow using the LLVM labels

The previous version of the tool was building the control

flow based on the element execution sequence, and didn’t

consider a situation when some of the top-level elements

could not be executed. In which case their control flow

would not appear in the DEPM (Fig. 4). This problem has

been solved in the new version of the tool, by building the

control flow based on the information obtained by the

DEPM pass.

Fig. 4. An example of the DEPM with an element that has been not

executed.

Another issue that has been solved is associated with the

length of the execution sequence. In case when the length of

the sequence is exceeding the number of the elements, tool

was intending to iterate through the entire sequence for the

control flow building, which significantly influenced the

performance.

C. Generation of the error propagation commands for the

instruction elements

Another implemented improvement is the error

propagation commands generation for the instruction

elements. This task was proposed for further development of

the tool in [1]. Error propagation commands contain a

probability of the likelihood of the data error occurrence

during the execution of an instruction. It allows the

computation of the reliability properties for the given

software. As the result, we have developed a probabilistic

<?xml version="1.0" encoding="utf-8"?>

<model>

 <element initial="true" name="A"/>

 <element name="B"/>

 <element name="C"/>

 <control_flow from="A" prob="1.0" to="B"/>

 <control_flow from="B" prob="1.0" to="C"/>

 <data name="d0"/>

 <data_flow from="d0" to="A"/>

 …

 <element host="A" initial="true" name="A0"/>

 <element host="A" name="A1"/>

 …

</model>

<?xml version="1.0" encoding="utf-8"?>

<epl>

 <model initial_element="A">

 <element compound="True" name="A">

 <cfc>(cf=A) -> 1:(cf'=B);</cfc>

 </element>

 <element name="B">

 <cfc>(cf=B) -> 1:(cf'=C);</cfc>

 </element>

 <element name="C"/>

 <control_flow from="A" to="B"/>

 <control_flow from="B" to="C"/>

 <data name="d0"/>

 <data_flow from="d0" to="A"/>

 …

 </model>

 …

 <model host="A" initial_element="A0">

 <element name="A0"/>

 <element name="A1"/>

 …

 </model>

 …

elements.txt

Seq F_ID BB_ID INS_ID Opcode_ID BB_name INS_name

Seq F_ID BB_ID INS_ID Opcode_ID BB_name INS_name

Seq F_ID BB_ID INS_ID Opcode_ID BB_name INS_name

…

elements.txt

Seq F_ID BB_ID INS_ID Opcode_ID BB_name INS_name

Seq F_ID BB_ID INS_ID Opcode_ID BB_name INS_name

Seq F_ID BB_ID INS_ID Opcode_ID BB_name INS_name

…

Proceedings of the 7th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making

Support", May 28-30, Ufa – Stavropol- Khanty-Mansiysk, Russia, 2019

243

parametric method for the error propagation commands

generation, that would contain failures probabilities for the

instruction elements, with the probabilities being an input

data. Using this method, an estimation can be made that the

data errors could occur with the given probabilities.

TABLE I. An example of the method’s input.

Instruction Probability

Alloca 0.00008

Store 0.00010

Load 0.00012

Icmp 0.00013

Add 0.00015

Fmul 0.00017

Fsub 0.00017

Error propagation commands allow the computation of
the reliability metrics. They are important measures that
being used for the reliability assessment and should comply
with system requirements [7].

V. TESTING AND RESULTS

In order to evaluate the developed functionality and

improvements, a benchmarking has been performed. The

tool was tested using over 20 C programs including the case

study from the previous work [1]. The focus of assessment

was to test the software on specific and extreme cases, such

as: several nested functions, several returns, function

arguments, several calls of one function and recursion. The

tool has demonstrated correct and reasonable behavior for

all cases. Several limitations of the tool are still in place and

shall be addressed in the next versions, though:

 A function can be called only in one place.

 A function cannot call itself, i.e. no recursion.

 Pointers and arrays are not supported.

 All functions have to be defined in a single

module.

In addition to the functional testing, there was also

carried out the performance evaluation. Every generated

model has been transformed into the DEPM model using the

new version of the tool. Mean time of transformation per

every model has been calculated. The snippet of results and

a total result of the comparison is presented in the Table 2.

TABLE I. An example of the method’s input.

Model name
Time to transform into

DEPM, sec.

Access-array-pointer 0.476

Array-largerst-element 0.737

Average-arrays 0.543

Check-armstrong-number 0.342

Digits-count 0.354

Even-odd 0.401

Factorial 0.542

Fibonacci 0.631

Flugstuerung 6.517

Frequency-character 0.417

GCD 0.195

LCM 0.319

Leap-year 0.614

Natural-number-sum 0.590

Palindrome-number 0.456

Prime-number 0.675

Product-number 0.145

Standard-deviation 0.534

String-lingth 0.565

Swapping 0.399

V-for-p 0.789

Min 0.145

Max 6.517

Mean 0.773

The comparison has shown that new version takes 0,773

seconds to transform source code into the DEPM model.

CONCLUSION

The data error propagation analysis is an important
part of the reliability evaluation of safety critical
software. The transformation tool based on the LLVM
technology has been proposed in [1]. In this paper we
introduced a new version of the tool for the automatic
generation of the DEPM. The key improvements of the
tool are usage the new format of DEPM, the
generation of the control flow using the LLVM IR labels
instead of the elements execution sequence, and the
generation of the error propagation commands for
instruction elements using probabilistic parametric
methods. The conducted functional and performance

evaluation has shown that the tool’s performance has been

significantly increased as well as functionality has been

extended.

REFERENCES

[1] A. Morozov, K. Janschek, and Y. Zhou, “Llvm-based stochastic error
propagation analysis of manually developed software components,” in

ESREL 2018, 2018.

[2] T. Fabarisov, N. Yusupova, K. Ding, A. Morozov, K. Janschek,

“Analytical Toolset for Model-based Stochastic Error Propagation

Analysis: Extension and Optimization Towards Industrial
Requirements”, CSIT 2017, 2017.

[3] A. Morozov, Dual-graph Model for Error Propagation Analysis of
Mechatronic Systems. Dresden: Jörg Vogt Verlag, 2012.

[4] A. Morozov and K. Janschek, “Probabilistic error propagation model

for mechatronic systems,” Mechatronics, vol. 24, no. 8, pp. 1189 –
1202, 2014.

LLVM-based C to DEPM transformation tool: New functionality and performance improvements

244

[5] K. Ding, T. Mutzke, A. Morozov, and K. Janschek, “Automatic

transformation of uml system models for model-based error
propagation analysis of mechatronic systems,” IFAC-PapersOnLine,

vol. 49, no. 21, pp. 439–446, 2016.

[6] The LLVM Compiler Infrastructure Project. https://llvm.org/

[7] K. Ding, A. Morozov, K. Janschek, “Reliability Evaluation of

Functionally Equivalent Simulink Implementations of a PID
Controller under Silent Data Corruption” in ISSRE 2018, 2018.

[8] V. Vidineev, K. Ding, A. Morozov, K. Janschek, N. Yusupova

“Improved Stochastic Control Flow Model for LLVM-based Software
Reliability Analysis”, CSIT 2018, 2018.

[9] OpenErrorPro on the github.
https://mbsatud.github.io/OpenErrorPro/, 2019

https://llvm.org/

