Изменена: 2018-06-20
Аннотация
Ключевые слова
Литература
1. An introduction to predictive maintenance. / Mobley, R. K. Butterworth-Heinemann, 2002.
2. Susto G.A., et al. Machine learning for predictive maintenance: A multiple classifier approach. // IEEE Trans. Ind. Informat. 2015. Vol 11 № 3 (2015)
3. Li H. et al. Improving rail network velocity: A machine learning approach to predictive maintenance. // Transp. Res. Part C Emerg. Technol. 2014. Vol 45.
4. Schaaf, J. C. et al. Systems Concept Development with Virtual Prototyping // Proc. of the 29th conference on Winter simulation 1997. P. 941–947.
5. Oetjens J-H., et al. Safety evaluation of automotive electronics using virtual prototypes: State of the art and research challenges. // Proc. of the 51st Annual Design Automation Conference. ACM, 2014.
6. De Sa, Gomes A., Zachmann G. Virtual reality as a tool for verification of assembly and maintenance processes. // CG 1999. Vol. 23 № 3 P. 389-403.
7. Fu T.C. A review on time series data mining // Eng. Appl. Artif. Intell. 2011. Vol. 24 P. 164-181
8. Bagnall, A. et al. The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. // Data Min. Knowl. Discov. 2017. Vol. 31 № 3 P. 606-660.
9. Wang, Z., Yan W., Oates T. Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. arXiv:1611.06455
10. Zhong J., Zhixin Y., Wong S.F. Machine condition monitoring and fault diagnosis based on support vector machine.// Industrial Engineering and Engineering Management (IEEM), 2010 .
11. Shulian Y. et al. Intelligent condition monitoring and fault diagnosis of a gearbox based on Artificial Neural Network. // Proc of the ICEMI'07, IEEE, 2007.
12. Aydin I.et.al. A simple and efficient method for fault diagnosis using time series data mining. // Proc. to IEMDC 2007, IEEE International
13. Yang J., Sun Z., Chen Y. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays. // Sensors (Basel) 2016. Vol. 12. P. 2069.
14. Campbell B., McDonald J.R. The use of artificial neural networks for condition monitoring of electrical power transformers // Neurocomputing 1998. Vol 23 № 1-3 (1998) P.97-109.
15. Sreejith B., Verma A. K., Srividya A. Fault diagnosis of rolling element bearing using time-domain features and neural networks // Proc.of the ICIIS’2008
16. Li, Z. et al. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method // MSPP 2011. Vol 25 № 7
17. Reiter S. et al. Fault injection ecosystem for assisted safety validation of automotive systems. // High Level Design Validation and Test Workshop (HLDVT), 2016 IEEE International.
18. http://statistik.mathematik.uni-wuerzburg.de/fileadmin/10040800/user_upload/time_series/the_book/2012-August-01-times.pdf (дата обращения: 31.03.2018).
19. Yaodong Z., Glass J. A piecewise aggregate approximation lower-bound estimate for posteriorgram-based dynamic time warping. // Proc. of the 12th Annual Conference of the International Speech Communication Association. 2011.
20. Kingma D. P., Ba J. Adam: A method for Stochastic Optimization. https://arxiv.org/abs/1412.6980