Локальное имитационное моделирование пульсового сигнала лучевой артерии для задач медицинской диагностики

В.В. Гучук Институт проблем управления РАН Москва, Россия e-mail: <u>polma@bk.ru</u>

Аннотация¹

Описывается возможный путь имитационного моделирования фрагментов пульсового сигнала артерии. лучевой Такое моделирование расширяет арсенал исследователя пульсовых сигналов. Предлагается выделить два архетипа пульсовых сигналов (archetype S и archetype V), что позволяет более избирательно подходить к структуре имитационной модели. Вводится понятие универсальной моделирующей аутигенной функции (УМАФ), что вводит единообразие в синтезе моделей сигналов. Отмечается, что форма пульсового сигнала может иметь различные особенности, связанные с локальными процессами, протекающими в лучевой артерии. Для сигнала, характеризующегося достаточно выраженным проявлением эффекта искажения формы затухающего колебательного процесса, приводится пример аппроксимации С YMAΦ. Описываются использованием приближенные соотношения между отдельными параметрами этой функции.

1. Введение

Использование пульсовых сигналов лучевой артерии расширяет арсенал медицинской существенно разработаны диагностики. Для этих целей эффективные методы и технологии [1 – 4] и созданы программно-аппаратные комплексы [5, 6]. При этом предполагается валидная, или адекватная формализация пульсовых сигналов, в том числе, путем создания их моделей.

Основная сложность при моделировании пульсовых сигналов лучевой артерии порождается большим разнообразием форм этих сигналов [7]. Попытка сузить это многообразие путем выделения на массиве наблюдений каких-либо "типовых" форм является эфемерной. При расширении массива пульсовых

Труды Шестой всероссийской научной конференции "Информационные технологии интеллектуальной поддержки принятия решений", 28-31 мая, Уфа-Ставрополь, Россия, 2018

сигналов произведенная кластеризация форм и сформированные признаки отнесения форм к тому или иному классу становятся несостоятельными.

Для практической реализации имитационного моделирования более перспективным является объективная параметризация пульсовых сигналов [8, 9] с предварительным выделение двух архетипов сигналов. Первый архетип назовем S-архетипом (archetype S) - от англ. susceptible (восприимчивый), а второй - V-архетипом (archetype V) - от англ. viscous (вязкий). На рис. 1 показаны сигналы, характерные для каждого из архетипов. Здесь и далее A - амплитуда сигнала, t – время.

Рис. 1. S-архетип (слева) и V-архетип (справа) пульсовых сигналов

Исходя из формальных особенностей, перевод формы из одного архетипа в другой можно осуществить применением к S-архетипу операции интегрирования, а к V-архетипу – операции дифференцирования, что иллюстрирует штриховая линия на рис. 1. Принципиальной разницы по амплитудным или временным параметрам между этими типами нет. Например, длительность периода приведенного сигнала S-архетипа около 0,85 с (70 уд/мин), а Vархетипа -- 0,82 с (73 уд/мин).

Далее рассматриваются вопросы имитационного моделирования фрагментов сигнала на примере пульсовых сигналов S-архетипа.

2. Структуризация пульсового сигнала

Визуально форма одного периода сигнала S-архетипа выглядит как типичное затухающее вынужденное колебание, вызванное импульсным воздействием (в данном случае порцией крови, поступившей в лучевую артерию в область запястья), что

Локальное имитационное моделирование пульсового сигнала лучевой артерии для задач медицинской диагностики

использовалось и ранее для моделирования пульсового сигнала [10].

При этом на форму зарегистрированного сигнала влияют различные факторы: - особенности датчика пульса, - физические нагрузки, - эмоциональное физиологические особенности состояние, организма, в том числе эластичность кровеносных сосудов, зависящая в большой степени от возраста и т.д. [11]. Также форма сигнала может иметь в различной степени выраженные особенности. связанные с локальными процессами, протекающими в лучевой артерии в области съема сигнала [4].

Рис. 2 отображает один период сигнала S-архетипа с достаточно выраженным искажением формы затухающего колебательного процесса.

Рис. 2. Иллюстрация "симптоматических" дуг I, II и III, подчеркивающих локальные особенности сигнала

На рисунке: *t_s* – время появления "систолического" зубца с амплитудой A_S, t_F – время появления "дикротического" зубца с амплитудой A_F. Можно предположить, что искажения - это проявление эффекта отражения волны от ареала бифуркаций. Под бифуркаций понимается ареалом иерархия разветвлений лучевой артерии, последовательно и древовидно располагающихся за точкой съема пульса, причем, наиболее заметный эффект порождает первое ответвление. Для подчеркивания проявленных локальных особенностей на рисунке изображены "симптоматические дуги" I, II и III, аппроксимирующие подчеркивающие И ЭТИ локальные особенности.

Введем понятие универсальной моделирующей аутигенной функции (УМАФ) $f_u(t)$, имеющей двойственный характер – с одной стороны функциональная зависимость может отобразить влияние различных факторов, с другой – она аутигенна, т.е. ее применение справедливо для моделирования лишь в определенном локализованном интервале времени:

$$f_u(t) = a_u(t - \tau_u) * h(t - \tau_u) * \sin(2\pi m_u * d_u(t - \tau_u) + \varphi_u) *$$

*
$$(1+h(t-\tau_h)*(b_u(t-\tau_h)-1))$$

где:

 a_u – амплитудная модуляционная функция, реализующая эффект затухания вынужденного колебания, вызванного импульсным воздействием; h – функция Хевисайда;

мультипликативная составляющая b_u для дополнительного микширования (подавления) эффект сигнала отражает суммарного внутрисистемных противодействия различных проявлению воздействия, факторов внешнего уменьшения реализуемый после амплитуды вынужденного колебания некоторого д0 сопоставимого (с потенциальным уровнем силы противодействия) уровня в процессе его затухания "локального" (гипотетическое проявление гомеостаза);

*c*_{*u*} – аддитивная составляющая, вызванная ненулевым средним значением сигнала;

d_u – функция дисторсии времени, отражающая нарушение периодичности колебательного процесса из-за нелинейности системы;

m_u – масштабирующая временная константа, определяющая начальную частоту моделирующего колебания;

 $\varphi_{\rm u}$ – начальная фаза моделирующего колебания;

 τ_u – начальная временная точка действия УМАФ;

 τ_b – начальная временная точка действия \boldsymbol{b}_{u} .

В вышеприведенной формуле:

 $a_u(t \leq (\tau_u + \Delta)) = a_u(\tau_u);$

 $a_u(t \geq (\tau_u + \Delta)) = a_u(\tau_u) e^{-\gamma \sigma};$

 $\sigma = (t - \tau_u - \Delta)^2$; γ – степень нелинейности;

 Δ – интервал инерции, отодвигающий начало заметного влияния силы, вызывающей затухание амплитуды колебаний;

 $h(t<0) = 0, h(t\geq0) = 1; c_u(t) = t^{\rho};$ ρ – степень нелинейности.

Запишем выражение для имитационной моделирующей функции $f_p(t)$, моделирующей один период сигнала, начиная с момента t_s (рис. 2):

$$f_{\rm p}(t) = f_{\rm g}(t) + f_{\rm r}(t) + f_{\rm w}(t),$$

где:

 $f_g(t)$ – основная функция, моделирующая затухающее вынужденное колебание, вызванное импульсным воздействием;

 $f_r(t)$ – корректирующая функция, моделирующая предположительно отраженную от ареала бифуркаций волну вынужденного колебания (см. выше);

 $f_w(t)$ – вспомогательная технологическая функция, моделирующая "рябь" или иные процессы, иногда проявляющиеся в наблюдаемой зоне.

Все функции являются УМАФ. Составляющая $f_t(t)$ может отсутствовать. Еще реже возникает необходимость использования компоненты $f_w(t)$. Изза вариабельности сердечного ритма и наличия в исследуемом локальном объеме лучевой артерии следов предыстории, последние две компоненты не синхронизированы с первой и между собой, что

Всероссийская научная конференция "Информационные технологии интеллектуальной поддержки принятия решений", Уфа-Ставрополь, Россия, 2018

порождает сложность моделирования фрагмента сигнала, включающего сразу несколько ее периодов. Параметры функций определяются по экспериментальным данным [10]. Так, начальная частота основной функции расположена в диапазоне 3,5...5 Гц, а частота корректирующей функции превышает 6-7 Гц.

Развернутое выражение пульсовой имитационной моделирующей функции:

$$f_p(t) = a_g(t-\tau_g) *h(t-\tau_g) *\sin(2\pi m_g *d_g(t-\tau_g) + \varphi_g) + +a_r(t-\tau_r) *h(t-\tau_r) *\sin(2\pi m_r *d_r(t-\tau_r) + \varphi_r) + +a_w(t-\tau_w) *h(t-\tau_w) *\sin(2\pi m_w *d_w(t-\tau_w) + \varphi_w),$$

где:

 $\varphi_g = \pi/2, \ \varphi_r = 0, \ \varphi_b = 0;$

 τ_g – момент систолического максимума выбранного периода сигнала (t_s на рис. 2);

 $a_g(t=\tau_g)=A_s$, интервал инерции для этой составляющей не более Ω_4 (четверть длительности первого периода вынужденного колебания);

 $a_r(t=\tau_r)=(0,1...0,2)$ A_s , интервал инерции для этой составляющей менее Ω_4 .

Для упрощения убраны мультипликативные и аддитивные составляющие. Величина масштабной временной константы m_g определяется, исходя из начальной частоты моделирующего колебания (3,5...5 Гц). Масштабная константа m_r определяется, исходя из начальной гипотетической частоты отраженной волны (более 6-7 Гц). При этом расстояние от t_g до t_r чуть более Ω_4 .

Необходимо отметить существенное различие частот затухающего колебания и отраженной волны. Возможно, это объясняется не только нелинейностью системы, но и особым характером формирования отраженной волны.

3. Оценочные параметры колебания пульсового сигнала

Приведем показатели, традиционно использующиеся при анализе затухающих колебаний [12], и определим их значения для имитационного моделирования периода сигнала.

Первой характеристикой выберем $\partial e k p e M e H m$ затухания D, который равен отношению амплитуд, отстоящих по времени на один период ($t_F - t_S$):

$$D=A_F/A_S.$$

Разделим сигналы S-архетипа на 3 класса по величине декремента затухания:

класс 1: D<0,2;

- класс 2 (основной): D=0,2-0,4;
- класс 3: D>0,4.

Для основного класса несложно определить время релаксации θ , за которое амплитуда $a_g(t)$ уменьшится в *е* раз: $\theta \leq (t_F - t_S)$. Соответственно, для этого класса сигналов коэффициент затухания β ,

который обратно пропорционален времени релаксации: $\beta \ge 1/(t_F - t_S)$.

Логарифмический декремент затухания равен логарифму D:

$$\lambda = \ln D = \beta(t_F - t_S) = \ln(A_F/A_S) = (t_F - t_S)/\theta = 1/N_e.$$

Он обратно пропорционален числу колебаний $N_{\rm e}$, в результате которых амплитуда колебаний уменьшилась в e раз. И для основного класса логарифмический декремент затухания близок к единице.

Еще одна характеристика колебательной системы - добротность *Q*:

$$Q=\pi/\lambda=\pi N_{\rm e}=\pi/\beta(t_F-t_S).$$

Добротность пропорциональна числу колебаний, совершаемых системой за время релаксации θ . Она является мерой относительной диссипации (рассеивания) энергии - чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим. Для основного класса сигналов $Q \approx \pi$.

понимать, что параметры Важно функции, моделирующей затухающее вынужденное колебание $f_{\rm g}(t)$, напрямую не связаны с частотой пульса и его вариабельностью, а определяются физиологическими особенностями организма, в том числе особенностями кровеносной системы. Поэтому, например, нецелесообразно искать в параметрах, характеризующих локальные особенности сигналов внутри основных периодов, те диагностические признаки, которые достаточно просто определяются на основе анализа динамики длительностей периодов и амплитуд систолических зубцов. Некоторые параметры моделирующих функций находится в пределах. достаточно широких Определенные параметры могут уточняться за счет использования экспертных оценок и их объективизации [8]. Для конкретизации параметров функции, моделирующей отраженную от ареала бифуркаций волну $f_r(t)$, возможно следует использовать кепстры [13].

Следует также учитывать, что иногда искажение формы затухающего колебательного процесса может вызываться дефектами процесса съема пульса, наводками или просто непроизвольными микродвижениями мышц, оказывающими влияние на датчик пульса, и другими артефактами.

4. Пример аппроксимации сигнала моделирующей функцией

На рис. 3 показана аппроксимация фрагмента сигнала моделирующей функцией УМАФ (сплошная линия – исходный сигнал, штриховая - аппроксимация).

Локальное имитационное моделирование пульсового сигнала лучевой артерии для задач медицинской диагностики

Рис. 3. Аппроксимация сигнала моделирующей функцией

Параметры моделирующего сигнала для данной аппроксимации следующие.

Основная функция $f_{g}(t)$:

- в амплитудной модуляционной функции a_g масштабирующая временная константа m_g соответствует начальной частоте моделирующего колебания 4,1 Гц;

- в функции дисторсии времени *d_g* степень нелинейности ρ=0,97;

- в мультипликативной составляющей b_g интервал инерции Δ =70 мсек, а степень нелинейности γ =1,05.

Корректирующая функция $f_r(t)$:

- начальная амплитуда составляет 0,1 от начальной амплитуды основной функции, интервал инерции Δ =110 мсек;

- в амплитудной модуляционной функции *a_r* масштабирующая временная константа *m_r* соответствует начальной частоте 7,0 Гц; -

в функции дисторсии времени *d_r* степень нелинейности ρ=1,04.

Вспомогательная функция $f_w(t)$ не использовалась.

Рисунок демонстрирует потенциальную возможность аппроксимации сигнала S-архетипа с целью оправдать предложенный подход к моделированию пульсовых сигналов.

5. Заключение

Пульсовая диагностика имеет многовековую предысторию [14, 15]. Основная сложность использования накопленного опыта тибетской медицины состоит в субъективизме ощущений практикующих специалистов, успешность которых связана с годами практики – сначала в качестве "ученика у мастера", а затем в качестве творца образов и адепта ассоциаций типа "этот пульс похож на порывы северного ветра перед восходом Солнца у подножия горы Кайлас". Все это порождает почти непреодолимые препятствия на пути формализации такого рода технологии диагностики, различающей около сотни типов пульса, использующей десятки точек для его съема, в том числе комплексно с наложением одновременно указательного, среднего и безымянного пальцев, и включающей в контекст диагностирования иридодиагностику, тактильный контакт, корреляцию с биоритмами и многое другое.

В литературе известны различные подходы к моделированию пульсового сигнала [16 – 20]. Здесь же рассмотрен вариант локального моделирования периферического сигнала S-архетипа в лучевой артерии, основанный на его визуальном сходстве с затухающим вынужденным колебанием. При этом, несмотря на кажущуюся сложность приведенных формул, они весьма упрощенно отображают реальные процессы, происходящие в лучевой артерии.

В работе:

- описан возможный путь имитационного моделирования фрагментов пульсового сигнала лучевой артерии, который расширяет арсенал исследователя таких сигналов;
- выделено два архетипа пульсовых сигналов, что позволяет более избирательно подходить к структуре имитационной модели;
- введено понятие универсальной моделирующей аутигенной функции УМАФ, которая позволяет осуществлять единообразный синтез моделей сигналов;
- проиллюстрировано применение УМАФ для моделирования конкретного пульсового сигнала;
- приведены оценочные соотношения между отдельными параметрами моделирующей функции.

При использовании результатов работы следует учесть, что, в отличие от теоретического импульсного воздействия, импульс порции крови, поступающей в область съема пульса, растянут по времени. Наблюдаемый процесс не является затухающим колебанием в классическом виде, а лишь имитируется как таковой.

Имеется большое разнообразие типов пульса и, поэтому, весьма затруднительно сконструировать универсальную модель процесса. Для дальнейшего уточнения параметров моделирующей функции и приближения ее к реальным процессам необходимо принимать во внимание ряд факторов.

Имеются свойства крови, которые существенно влияют на наблюдаемые амплитудно-временные характеристики пульсового сигнала [21]. Кровь представляет собой вязкую несжимаемую жидкость. Вязкость приводит к тому, что при движении крови по артериям образуются слои, движущиеся с разной скоростью – пристеночный слой самый медленный из-за трения о неподвижный эндотелий сосудистой стенки, следующий, более внутренний слой, быстрее

Всероссийская научная конференция "Информационные технологии интеллектуальной поддержки принятия решений", Уфа-Ставрополь, Россия, 2018

253

- его притормаживает не неподвижная стенка, а подвижный пристеночный слой крови, и т.д. Несжимаемость проявляется в том, что каждая новая порция крови (импульс крови) может поместиться в локальной области артерии, лишь растягивая ее стенки. Есть два режима течения крови: ламинарное (слоистое) течение (вдоль потока каждый выделенный тонкий слой скользит, не перемешиваясь и турбулентное соседними). (происходит вихреобразование И перемешивание крови). Турбулентность наблюдается в достаточно крупных артериях, а также в зоне разветвления артерий (точки бифуркации). Поэтому, если моделируется кровоток в лучевой артерии в области запястья (где мало число Рейнольдса [22]), следует рассматривать лишь ламинарный вариант. Также надо учесть, что кровеносные сосуды эластичны, и в момент прохождения порции крови растягиваются в ширину (и длину). На макроуровне продвижение крови обеспечивается не только перепадом давления, но и активностью стенок артерий.

На рассматриваемый процесс оказывают влияние и другие факторы, например, эффект деформирования спирально-анизотропных тел [20], порождающий винтообразное течение крови, а также различные физиологические процессы организма, в частности, дыхание или т.н. "медленные волны" [16]. Все это порождает вариативность параметров имитационной моделирующей функции и определяет сложность процесса моделирования.

Список используемых источников

- 1. Azargaev L.N., Boronoev V.V. The Use of the Differential Sphygmogram of the Radial Artery for Estimating the Pumping Function of the Heart // Human physiology. 2007. Vol. 33. № 5. P. 567-576.
- 2. Бороноев В.В. Анализ пульсовой волны в автоматизированном режиме // Медицинская техника. 2014. № 4. С. 33-36.
- Guchuk V.V. Composite algorithm for separation of the periods of a pulse signal in medical diagnostics tasks // Proc. of the 10th International Conference "Management of Large-Scale System Development". Moscow. IEEE Explore Digital Library, 2017. P. 1–4.
- Интеллектуальный анализ характеристик пульсового сигнала лучевой артерии в задачах медицинской диагностики / А.А. Десова, В.В. Гучук, А.А. Дорофеюк. — М.: ИПУ РАН, 2013. — 120с.
- 5. Сторчун Е.В., Бороноев В.В. Технические особенности синхронной регистрации пульса // Медицинская техника. 2005. № 2. С. 31-33.
- 6. Гучук В.В., Десова А.А., Дорофеюк А.А., Киселева Н.Е. Аппаратно-программное обеспечение методов анализа квазипериодических биосигналов (на примере пульсового сигнала лучевой артерии) // Датчики и системы. 2014. № 8. С. 17-22.

- Desova A.A., Guchuk V.V., Dorofeyuk A.A. A new approach to pulse signal rhythmic structure analysis // Int. J. Biomedical Engineering and Technology. 2014. Vol. 14. № 2. P.148-158.
- Гучук В.В. Технология объективизации экспертной кластеризации слабо формализуемых объектов // Вестник УГАТУ. 2014. Т. 18. № 5 (66). С. 149-154.
- 9. Гучук В.В., Десова А.А., Дорофеюк А.А., Анохин А.М. Процедура объективизации экспертной классификации характеристик биосигналов для медико-диагностических комплексов // Датчики и системы. 2014. № 2. С. 2-7.
- 10. Wouter Huberts, Koen Van Canneyt UGent, Patrick Segers UGent. Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery // Journal of Biomechanics. Elsevier BV (Netherlands). 2012. № 45 (9). P. 1684-1691.
- 11. Илюхин, O.B., Лопатин Ю.М. Скорость распространения пульсовой волны и эластические свойства магистральных артерий: факторы, свойства, влияющие на механические возможности диагностической оценки // Вестник ВолГМУ. 2006. № 1. С. 3-8.
- 12. Основы теоретической физики / И.В. Савельев. М.: Наука, 1991. 496 с.
- 13. Теория сигналов / Л. Френкс. М.: Советское радио, 1974. 344с.
- 14. Модернизированная китайская пульсовая диагностика под кинезиологическим контролем / И. Ш. Ахтямов, Г. М. Крутов. М.: Перо, 2016. 300с.
- 15. Пульсовая диагностика заболеваний в тибетской медицине: физические и технические аспекты / В.В. Бороноев. Улан-Удэ.: БНЦ СО РАН, 2015. 293 с.
- 16. Булдакова Т.И. Модель пульсового механизма на основе волнового описания сигнала // Наука и образование. 2005. № 8. С. 1-14.
- 17. Дармаев Т. Г., Цыбиков А. С., Хабитуев Б. В. Математическое моделирование пульсовых волн на основе теории солитонов и уравнения Кортевега Де Фриза // Вестник Бурятского гос. университета. 2014. № 1. С. 35-39.
- 18. Раднаев Б. Б., Цыбиков А. С., Хабитуев Б. В. АRIMА-модель пульсового сигнала // Вестник Бурятского гос. университета. 2017. № 1. С. 78-85.
- 19. Бороноев В.В., Гармаев Б.З. Исследование статистической модели информативных точек пульсовой волны // Вестник Бурятского гос. университета. 2012. № 3. С. 217-219.
- 20. Чигарев А. В. Моделирование процесса распространения пульсовой волны и ее влияние на

Локальное имитационное моделирование пульсового сигнала лучевой артерии для задач медицинской диагностики

гемодинамику сосудов. // Теоретическая и прикладная механика. 2009. № 24. С. 160-167.

- 21. Волобуев А.Н. Течение жидкости в трубках с эластичными стенками // Успехи физических наук. 1995. №2. С. 177-186.
- 22. Медицинская и биологическая физика / А.Н. Ремизов. М.: ГЭОТАР-Медиа, 2014. 656 с.