
An Artificial Neural Network for Automated Fault Detection

Julian Bitterw olf
FZI Research Center for

Information Technology (FZI)
Karlsruhe, Germany

e-mail: bitterwo@ fzi.de

Evgenia Rusak
FZI Research Center for

Information Technology (FZI)
Karlsruhe, Germany
e-mail: rusak@ fzi.de

Sebastian Reiter
FZI Research Center for

Information Technology (FZI)
Karlsruhe, Germany

e-mail: sreiter@fzi.de

Alexander Viehl
FZI Research Center for

Information Technology (FZI)
Karlsruhe, Germany
e-mail: viehl@ fzi.de

Oliver Bringmann
University o f Tubingen

Tubingen, Germany
e-mail: bringman@i nformatik .uni-tuebingen.de

Abstract
Intelligent and interconnected cyber physical systems are
a key enabler for future cost-efficient, automated and
flexible industrial production systems. Predictive
maintenance and condition monitoring are important
techniques in order to reduce costs associated with
unnecessary maintenance or premature breakdowns. In
this paper, we propose techniques from supervised
learning for automated malfunctioning detection. For that
purpose, we train an artificial neural network on time
series data representing the internal system behavior. We
present experimental results from an industrial motor
control system. We use a digital twin of the electronic
component that models the relevant features of the
physical system. The obtained information can be used
during the runtime of technical systems and installations
for a criticality analysis and the subsequent selection of
measures.

1. Introduction
The prevalence of software-controlled functionalities in
industrial systems is continuously increasing. The high
degree of connections between system parts leads to a
strong interconnection of the system. This means that in
the worst case scenario, small faults of system parts can
propagate to cause failures of the entire system.
Condition monitoring as part of predictive maintenance
serves to determine the condition of the overall system,
system parts or components to notice subtle changes in
relevant parameters in order to predict when maintenance
or other measures should be performed to prevent
failures. [1].

Proceedings of the 6th All-Russian Scientific
Conference "Information Technologies for Intelligent
Decision Making Support", May 28-31, Ufa -
Stavropol, Russia, 2018

Predictive maintenance aims to ensure the maximum
deployment efficiency of production systems and thereby
save high costs of unnecessary maintenance or in the
opposite case, costs associated with breakdowns

However, automated fault detection is a challenging task,
as the system can react to different faults in different
ways. Fault detection means the tracking of unexpected
behavior of relevant parameters and the discovery of
patterns in data that might indicate malfunctioning.
Machine learning techniques are a common “working
horse” for the task of pattern recognition. Several
machine learning algorithms have been used for the task
of predictive maintenance [2, 3].

Fig. 1: Schematic of the proposed automated fault
detection pipeline

Virtual prototyping (VP) has gained popularity as it
allows for a validation of a new design during the
development stage prior to building a physical prototype
[4, 5]. In addition, VP is also used for maintenance
purposes [6]. In this scenario, possible faults or
degradation effects are simulated virtually to predict
when maintenance should be provided to the physical
system.

6th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making Support", Ufa-Stavropol, Russia, 2018
141

mailto:bitterwo@fzi.de
mailto:rusak@fzi.de
mailto:sreiter@fzi.de
mailto:viehl@fzi.de
mailto:bringman@informatik.uni-tuebingen.de

In this paper, we present a supervised machine learning
algorithm for the task of automated fault detection. A
schematic of the simulation and the automated fault
detection pipeline is presented in Fig.1. The general idea
is to train an artificial neural network (ANN) with labeled
data that is obtained from a virtual system modeled
according to a physical system and therefore being its
digital twin. For the task of condition monitoring,
different labels indicate different system states. Some
system states contain faults and thus, the ANN learns to
recognize when faults are present. After the training
stage, the ANN can accept data from the physical system
in order to track potentially dangerous faults. Our main
conclusion is that the ANN is very successful in
separating faulty from faultless cases, since we achieve
an accuracy of 100% on the validation set after only
training for 4 epochs.

The main contributions of this paper are:

• We demonstrate a methodology to generate an
automated condition monitoring system from
VP.

• We show that techniques from supervised
machine learning serve as a valid method to
distinguish between faulty and faultless cases
and thus are suitable for the task of fault
detection.

• We illustrate our methodology using an
industry-relevant use-case.

The remainder of the paper is structured as follows: In
Section 2, we discuss previous publications on the
classification of time series data and the use of supervised
machine learning algorithms for condition monitoring. In
Section 3, we present our analysis approach for the
employed methodology and time series classification. In
Section 4, we describe our industrial use-case in more
detail. Experimental results are provided in Section 5 and
finally, the paper ends with a conclusion in Section 6 .
References are provided in Section 7.

2. Related Work
The data that is used for the fault detection algorithm has
the nature of time series. For the tasks of condition
monitoring and fault detection, time series classification
has risen in popularity in the last decade. Time series
analysis is a well-studied field [7]. In particular, time
series classification has been studied extensively. Bagnall
et al. presented a comprehensive review of different
classification algorithms and their evaluation on publicly
available data sets from the University of California
Riverside time series classification archive (UCR) [8].
They have found that 1-NN DTW and Rotation Forest
classifiers offer the best results in most cases. Despite
these findings, we have used a shallow ANN as a
classifier, because it was very successful for our use-case.
In a recent publication, Wang et al. showed that deep
learning can be used for time series classification [9]. The
authors implement both a fully convolutional network

and a very deep residual network and argue that with
deep learning, heavy pre-processing or feature crafting is
no longer necessary to achieve premium performance.
They demonstrate their findings on the UCR data set.

Several authors have applied methods of time series
classification for the task of condition monitoring and
automated fault detection. Zhong et al. studied fault
diagnosis for a gearbox based on Support Vector
Machines for condition monitoring [10]. The data was
obtained from an experimental test rig. Relevant features
were extracted from the vibration signals of the gearbox
with the wavelet packet transform as well as using time-
statistical features. For an optimal set of features, the
authors reported an accuracy of 100% on the test set.
Shulian et al. presented an artificial neural network as a
classifier for the task of fault diagnosis o f a gearbox [11].
The data was obtained from a physical gearbox and faults
were classified according to their severity such as e.g.
‘gentle fault’ or ‘bad fault’. Aydin et al. presented a
fuzzy c-means algorithm that was used to distinguish
between broken rotor bar faults and the healthy condition
of an induction motor at four different operation speeds
[12]. Recently, Yang et al. showed a time-efficient
clustering-k-nearest-neighbors algorithm for the purpose
of fault detection in gas sensor arrays [13]. The authors
verified the performance o f the algorithm with a real gas
sensor array experimental system with different kinds of
faults. Campbell et al. examined the suitability of
artificial neural networks to be used for condition
monitoring of electric power transformers [14]. Sreejith
et al. demonstrated an algorithm for the task of fault
diagnosis of rolling element bearings using time-domain
features and feedforward neural networks [15]. After the
training stage, an accuracy of 100% to distinguish
different states of the bearing was reported.

The references mentioned above were all evaluated with
data obtained from physical experimental setups and
made no use of VP. In general, most evaluations were
performed on measured data. Li et al. used both VP as
well as experimental studies for the task of gear multi­
fault diagnosis [16]. The employed methods include the
wavelet transform technique, Autoregressive models and
Principal Component Analysis. With our work, we
complement the existing research for automated fault
detection in industrial systems.

3. Analysis Approach

3.1. Methodology
The automated fault detection framework was briefly
introduced in the Introduction and Fig. 1 and is explained
here in more detail. An extended schematic of the
automated fault detection pipeline is displayed in Fig. 2.

We differentiate between the Virtual Domain, the
Analysis Domain and the Physical Domain. The Virtual
Domain contains the virtual prototype and data obtained
from it, while the Physical Domain contains the physical
counterpart that is modelled by the VP. Data output from

An Artificial Neural Network for Automated Fault Detection
142

both the Virtual and the Physical Domains is analyzed in
the Analysis Domain. The arrows indicate the directions
of information flow between the various stages within the
whole system. The domains and their interconnections
will be explained in the following, starting with the
Virtual Domain (left part of Fig.2).

The System under Test (SuT) and test bench
configurations are defined for the stimulation of the VP
within the test bench. Upon stimulation, the VP produces
time series as output. Depending on the parameters
defined in the SuT and test bench configurations, the
resulting time series have different shapes. In half o f the
cases, a fault is injected during the simulation. The time
series are then used as training data to train an artificial
neural network (ANN) in the Analysis Domain. The
ANN learns patterns in the time series and determines
class labels to group similar time series into the same
classes. The classes can either represent different motor
states or, for the task of automated fault detection,
different faults. Thus, after classification, a criticality
analysis is performed to determine critical classes that
indicate critical faults. The information obtained from the
criticality analysis is used for decision making to
conclude whether and which (safety) measures should be
invoked to prevent system failures. These measures are
then applied to the VP.

evaluation o f time series data produced by the physical
system. Analogously to the different classes in the Virtual
Domain, a criticality analysis can be performed for the
system state of the physical system. Based on the results
of the criticality analysis, the subsequent decision making
and safety measure stages are analogous to the Virtual
Domain as described above.

The employment o f VP for the simulation of different
faults has several benefits. First, running a simulation is
usually much faster than tracking the faults physically
and for example, in case of degradation effects, gaining a
sufficient amount of data in the physical world can take
very long. Additionally, with the employment of VP, it is

d e f p a a (t s , n) :

f = n p . z e r o s (n) # i n i t i a l i z e s
d = l e n (t s) / / n # s l i c e l e n g t h
f o r i i n r a n g e (0 , n) :

s l i c e = t s [i * d : (i + 1) * d]

f [i] = n p .m e a n s l i c e)

r e t u r n f

possible to simulate many different faults and observe
their propagation through the system. Some faults are
very rare, so the simulation of all the possible fault
manifestations allows for their discovery and prediction
in the physical world before they actually appear for the
first time. In the best case scenario, the simulation of
faults makes it unnecessary to obtain a data base of
possible faults in the physical world in the first place. In
that case, unexpected behavior of physical machinery
actually becomes ‘expected’ and certain measures can be
invoked depending on the fault.

In this work, we focus on the first five stages in the
Virtual and Analysis Domains. Our use-case is a
SystemC-based VP of an industrial motor control. The
employed SystemC framework is described in Ref. [17].
The motor control model and its parameters are described
in Section 4 in more detail. The output of the simulation
is the engine speed over time which is a sequence of
discrete time data, and can therefore be treated as a time
series. We focus on the easiest case of fault detection
with only two classes: ‘Pass’ if no fault is injected and
‘Fail’ if a fault is injected. The resulting labeled engine
speed data is then fed as input in the ANN that then
distinguishes faulty and faultless classes. In the future,
we intend to implement the next steps as displayed in
Fig.2 such as the stages of criticality analysis, decision
making and measures.

Fig. 2: Flowchart of the Virtual, Analysis and Physical
Domains showing information flow and
interconnections between the domains.

The proposed fault detection algorithm is evaluated on
data obtained by the VP. The VP is a model of a physical
system and the proposed algorithm can be used for
condition monitoring in the Physical Domain (right part
of Fig.2). The trained ANN can be used for the

3.2. Framework for time series classification
The data that is used for the task of condition monitoring
has the nature of time series. A time series is a sequence
of observations that are arranged according to the time of
their outcome [18]. In this work, we stick to univariate
time series, which have a real numbered value at each
point in time. A time series may be interesting as a
whole, if it is the result o f the observation of a finite-time
process. Another category of time series are single series

6th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making Support", Ufa-Stavropol, Russia, 2018
143

of ongoing or online data such as temperature curves or
stock value charts. The questions that pose themselves for
those different categories of time series are somewhat
differing, and in this paper we focus on the first kind.
Thus, in the remainder of this paper, by ‘time series’ we
specifically mean a univariate whole time series. We
further assume that for a given problem, the data points
are time series which all have the same length.

Since a time series consists of one numeric value per time
step, the dimension of a space of possible time series is
its length, which equals to the total duration multiplied by
the temporal resolution. This number can easily become
very large and make pointwise comparisons between time
series very time-consuming. Furthermore, many
classification algorithms require or benefit from each
sample being a point in a relatively low dimensional
space. Thus, while it is in principle possible to treat a
time series as an element of a very high dimensional
space, for many algorithms that try to ‘understand’ the
nature of time series, it is necessary to reduce this
dimension drastically. This can be done by extracting
certain features from time series. Piecewise Aggregate
Approximation (PAA) is a simple feature extraction
method [19]. Given a time series t s as a n u m p y array,
we extract n features with the following Python 3
implementation of PAA:

The features are the means of n disjoint slices that cover
the original time series. The calculated features are
returned in an array f .

After the feature extraction step, the data is fed into a
shallow artificial neural network with one hidden layer.
The architecture o f the ANN is depicted in Fig. 3. The
ANN has the structure affine ^ ReLU ^ affine ^
softmax. The softmax layer turns the score from the last
affine layer into the probability . Eventually,
'Fail' is predicted if p (' Fail ') is larger than 50% and 'Pass'
is predicted if is below 50%.

Our current analysis stops at this stage after the
separation of faulty from faultless time series. To follow
the flowchart presented in Fig.2, a criticality analysis
would be the next step and we intend to implement it in
the future and thereby extend our automated fault
detection framework. In the current scenario, we only
consider two classes of ‘Pass’ or ‘Fail’ and do not
distinguish different kinds of faults. For the task of a
criticality analysis, such a simple ‘Pass’/ ’Fail’ threshold
does not suffice. Instead, it is necessary to sort different
faults in different fault classes. Different faults exhibit
different behavior and thus, affect the system differently.
The purpose of the criticality analysis is to determine
which faults are the most critical ones and therefore,
which measures must be invoked as a reaction.

implemented in SystemC. A schematic of the simulated
control process and the fault injection is displayed in Fig.
4. The test bench orders a programmable logic controller
(PLC) when and how fast to run the motor. Given this
information, the PLC transmits timed instructions to a
transaction-level modelling queue, which provides them
the motor control unit. The motor control unit now
determines the duty cycle for the motor, i.e. what
percentage of a fixed time period the motor should be
powered. It thus conveys the number of ‘on’ and the
number of ‘off’ time steps within a period to a pulse
width modulator (PWM). The PWM applies power to the
motor for the number of ‘on’ time steps and then deprives
the motor of current for the number of ‘off steps. The
PWM repeats this process until a new signal is received
from motor control.

The output of the simulation is the motor's rotational
speed over time, with subsequent time steps of s
between t = 0s and t = 0.5 s. In Fig.5, an example for
such a time series produced by specific engine
parameters is shown. After 68ms, the motor is started and
quickly overshoots to a speed of 305rpm at 74ms.
Afterwards, the system oscillates until it levels out to a
running speed of 197rpm. At t = 2 67ms, a load of 7Nm
is attached to the motor. Subsequent to a short period of
disturbance, the motor speed falls to its final plateau of
186rpm. For this example, we disabled the feedback to
the motor controller and therefore the closed-loop
control.

Fig.6 shows the same motor with identical parameters,
but this time a fault is induced into the process: at
t = 2 08ms, a transient bit error inside the PWM is
simulated. This causes the PWM to operate on the basis
of an overlong

Fig. 3: Architecture of the considered artificial neural
network.

4. Use-Case
The use-case for the proposed time series classification
approach is a motor control model. This model is

An Artificial Neural Network for Automated Fault Detection
144

Fig. 4: Schematic of the simulated motor and the fault
injection process

duty cycle. Aggregated over time, this means that it
transmits an excessive amount o f power to the motor.
After 200ms, at t = 407ms, the bit error is corrected and
the PWM is controlled with the correct value. The fault
injection process results in an immediate disturbance of
the speed curve and eventually the speed being increased
by a value of 12rpm when running with no load and by a
value of 16rpm while the load is present. Additionally,
the oscillation process that occurs when the load is
attached changes slightly in form.

5. Experimental Results
The full data set consists of 8000 time series similar to
those displayed in Fig.5 and Fig.6. The motor parameters
that are modified to get this number are:

• The supply voltage (UDC): steps of 1.4 V
between 126 V and 154 V

• The motor’s flux constant between 0.5 Vs and
0.6 Vs, step size of 0.005 Vs

• An amount of inertia to start the motor from 0.5
gm2 to 1.5 gm2 with steps of 0.1 gm2

These parameter variations give a total of 4000 time
series. For each parameter configuration, the simulation
was run once without fault injection and once with an
injected fault. For the cases where a fault was injected, it
was done at a random time. This onset time for fault
injection was drawn from a uniform distribution in the
interval between 200ms and 300ms.

The structure of the data set thus contains 4000 tuples of
time series with and without injected faults and is
therefore very regular. This regularity could lead to
problems of the learned classification heuristics of bad
generalization to random and independent data. Similar
concerns hold for the data generation part, where
parameter spaces were discretized in regular grids. To
break these symmetries, for each run, we only used a
fraction of the data (500 time series for each) both for our
training and validation sets. As in applications with real
data there might be relatively few samples where a fault
occurs, we chose a fault percentage o f 20% for training.

That means that from 500 time series used for training,
100 contain faults and 400 do not contain faults.

To reduce the samples’ dimension of to a
more manageable number, we define and extract a
desired

Fig. 5: Motor speed depending on the time without a
fault being inserted (‘Pass’).

Fig. 6: Motor speed depending on the time with an
inserted fault (‘Fail’).

number of features with the method of PAA described
earlier. We use as the number of features. Fig. 7
shows features 10 and 15 for 25 samples with an injected
fault and for 119 samples without a fault. While for those
time series without fault injection, there is a clear linear
correlation between the two regarded features, the
positions of the samples with an injected fault are more
scattered.

The previously described ANN architecture was
implemented using the publicly available software
package PyTorch. The width of the hidden layer was set
to 40. For backpropagation, the Adam optimizer that is
implemented in PyTorch as t o r c h . o p t i m . A d a m was
used [20]. The learning rate was set to 0.005. In Fig. 8,
the training loss is shown. The results on the validation
set are flawless: after 4 training epochs, we reach an
accuracy of 100% on the validation set. The accuracy on
the validation set is displayed in Fig.9. The training time
for 4 epochs takes less than one second, which can be
attributed to the heavily reduced size of the training set
due to the feature extraction. We have thus shown that a

6th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making Support", Ufa-Stavropol, Russia, 2018
145

shallow ANN can learn meaningful patterns from
features extracted with PAA and distinguish between
faulty and faultless time series.

It is important to discuss the limitations o f our approach.
We considered the task of automated fault detection in
the context of supervised learning. The disadvantage of
this approach is that we have to rely on the availability of
labeled data. As a next step, it would be interesting to
tackle the automated fault detection problem with
techniques from unsupervised learning. This way, a
solution for cases when there is no labeled data could be
offered.

6. Conclusion
We have demonstrated a methodology supporting
automated fault detection using virtual prototyping. We
have shown that methods from supervised machine
learning are suitable for the task of automated fault
detection. Based on the results from the automated fault
detection, a criticality analysis can be performed to judge
which measures must be triggered. We have evaluated
our methods on data obtained from VP and, since the
virtual

Fig. 7: Distribution of features 10 and 15 for 144
samples

Fig. 8: Training loss for the training of the ANN

Fig. 9: Validation accuracy during the first training
epochs of the ANN

prototype is a digital twin of a physical system, the
trained network can be applied for condition monitoring
of the physical machine.

8. Acknowledgements
This work has partially been supported by the German
Ministry of Science and Education (BMBF) in the project
SAFE4I under grant 01IS17032C.

9. References
1. An introduction to predictive maintenance. / Mobley,

R. K. Butterworth-Heinemann, 2002.
2. Susto G.A., et al. Machine learning for predictive

maintenance: A multiple classifier approach. // IEEE
Trans. Ind. Informat. 2015. Vol 11 № 3 (2015)

3. Li H. et al. Improving rail network velocity: A
machine learning approach to predictive maintenance.
// Transp. Res. Part C Emerg. Technol. 2014. Vol 45.

4. Schaaf, J. C. et al. Systems Concept Development
with Virtual Prototyping // Proc. o f the 29th
conference on Winter simulation 1997. P. 941-947.

5. Oetjens J-H., et al. Safety evaluation of automotive
electronics using virtual prototypes: State of the art
and research challenges. // Proc. o f the 51st Annual
Design Automation Conference. ACM, 2014.

6 . De Sa, Gomes A., Zachmann G. Virtual reality as a
tool for verification of assembly and maintenance
processes. // CG 1999. Vol. 23 № 3 P. 389-403.

7. Fu T.C. A review on time series data mining // Eng.
Appl. Artif. Intell. 2011. Vol. 24 P. 164-181

8 . Bagnall, A. et al. The great time series classification
bake off: a review and experimental evaluation of
recent algorithmic advances. // Data Min. Knowl.
Discov. 2017. Vol. 31 № 3 P. 606-660.

9. Wang, Z., Yan W., Oates T. Time Series
Classification from Scratch with Deep Neural
Networks: A Strong Baseline. arXiv:1611.06455

An Artificial Neural Network for Automated Fault Detection
146

10. Zhong J., Zhixin Y., Wong S.F. Machine condition
monitoring and fault diagnosis based on support
vector machine.// Industrial Engineering and
Engineering Management (IEEM), 2010 .

11. Shulian Y. et al. Intelligent condition monitoring and
fault diagnosis of a gearbox based on Artificial Neural
Network. // Proc of the ICEMI'07, IEEE, 2007.

12. Aydin I.et.al. A simple and efficient method for fault
diagnosis using time series data mining. // Proc. to
IEMDC 2007, IEEE International

13. Yang J., Sun Z., Chen Y. Fault Detection Using the
Clustering-kNN Rule for Gas Sensor Arrays. //
Sensors (Basel) 2016. Vol. 12. P. 2069.

14. Campbell B., McDonald J.R. The use of artificial
neural networks for condition monitoring of electrical
power transformers // Neurocomputing 1998. Vol 23
№ 1-3 (1998) P.97-109.

15. Sreejith B., Verma A. K., Srividya A. Fault diagnosis
of rolling element bearing using time-domain features
and neural networks // Proc.of the ICIIS’2008

16. Li, Z. et al. Virtual prototype and experimental
research on gear multi-fault diagnosis using wavelet-
autoregressive model and principal component
analysis method // MSPP 2011. Vol 25 № 7

17. Reiter S. et al. Fault injection ecosystem for assisted
safety validation of automotive systems. // High Level
Design Validation and Test Workshop (HLDVT),
2016 IEEE International.

18. http://statistik.mathematik.uni-
wuerzburg.de/fileadmin/10040800/user_upload/time_
series/the_book/2012-August-01-times.pdf (дата
обращения: 31.03.2018).

19. Yaodong Z., Glass J. A piecewise aggregate
approximation lower-bound estimate for
posteriorgram-based dynamic time warping. // Proc.
of the 12th Annual Conference of the International
Speech Communication Association. 2011.

20. Kingma D. P., Ba J. Adam: A method for Stochastic
Optimization. https://arxiv.org/abs/1412.6980

6th All-Russian Scientific Conference "Information Technologies for Intelligent Decision Making Support", Ufa-Stavropol, Russia, 2018
147

http://statistik.mathematik.uni-wuerzburg.de/fileadmin/10040800/user_upload/time_
http://statistik.mathematik.uni-wuerzburg.de/fileadmin/10040800/user_upload/time_
https://arxiv.org/abs/1412.6980

