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Abstract
Intelligent and interconnected cyber physical systems are 
a key enabler for future cost-efficient, automated and 
flexible industrial production systems. Predictive 
maintenance and condition monitoring are important 
techniques in order to reduce costs associated with 
unnecessary maintenance or premature breakdowns. In 
this paper, we propose techniques from supervised 
learning for automated malfunctioning detection. For that 
purpose, we train an artificial neural network on time 
series data representing the internal system behavior. We 
present experimental results from an industrial motor 
control system. We use a digital twin of the electronic 
component that models the relevant features of the 
physical system. The obtained information can be used 
during the runtime of technical systems and installations 
for a criticality analysis and the subsequent selection of 
measures.

1. Introduction
The prevalence of software-controlled functionalities in 
industrial systems is continuously increasing. The high 
degree of connections between system parts leads to a 
strong interconnection of the system. This means that in 
the worst case scenario, small faults of system parts can 
propagate to cause failures of the entire system. 
Condition monitoring as part of predictive maintenance 
serves to determine the condition of the overall system, 
system parts or components to notice subtle changes in 
relevant parameters in order to predict when maintenance 
or other measures should be performed to prevent 
failures. [1].
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Predictive maintenance aims to ensure the maximum 
deployment efficiency of production systems and thereby 
save high costs of unnecessary maintenance or in the 
opposite case, costs associated with breakdowns

However, automated fault detection is a challenging task, 
as the system can react to different faults in different 
ways. Fault detection means the tracking of unexpected 
behavior of relevant parameters and the discovery of 
patterns in data that might indicate malfunctioning. 
Machine learning techniques are a common “working 
horse” for the task of pattern recognition. Several 
machine learning algorithms have been used for the task 
of predictive maintenance [2, 3].

Fig. 1: Schematic of the proposed automated fault 
detection pipeline

Virtual prototyping (VP) has gained popularity as it 
allows for a validation of a new design during the 
development stage prior to building a physical prototype 
[4, 5]. In addition, VP is also used for maintenance 
purposes [6]. In this scenario, possible faults or 
degradation effects are simulated virtually to predict 
when maintenance should be provided to the physical 
system.
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In this paper, we present a supervised machine learning 
algorithm for the task of automated fault detection. A 
schematic of the simulation and the automated fault 
detection pipeline is presented in Fig.1. The general idea 
is to train an artificial neural network (ANN) with labeled 
data that is obtained from a virtual system modeled 
according to a physical system and therefore being its 
digital twin. For the task of condition monitoring, 
different labels indicate different system states. Some 
system states contain faults and thus, the ANN learns to 
recognize when faults are present. After the training 
stage, the ANN can accept data from the physical system 
in order to track potentially dangerous faults. Our main 
conclusion is that the ANN is very successful in 
separating faulty from faultless cases, since we achieve 
an accuracy of 100% on the validation set after only 
training for 4 epochs.

The main contributions of this paper are:

• We demonstrate a methodology to generate an 
automated condition monitoring system from 
VP.

• We show that techniques from supervised 
machine learning serve as a valid method to 
distinguish between faulty and faultless cases 
and thus are suitable for the task of fault 
detection.

• We illustrate our methodology using an 
industry-relevant use-case.

The remainder of the paper is structured as follows: In 
Section 2, we discuss previous publications on the 
classification of time series data and the use of supervised 
machine learning algorithms for condition monitoring. In 
Section 3, we present our analysis approach for the 
employed methodology and time series classification. In 
Section 4, we describe our industrial use-case in more 
detail. Experimental results are provided in Section 5 and 
finally, the paper ends with a conclusion in Section 6 . 
References are provided in Section 7.

2. Related Work
The data that is used for the fault detection algorithm has 
the nature of time series. For the tasks of condition 
monitoring and fault detection, time series classification 
has risen in popularity in the last decade. Time series 
analysis is a well-studied field [7]. In particular, time 
series classification has been studied extensively. Bagnall 
et al. presented a comprehensive review of different 
classification algorithms and their evaluation on publicly 
available data sets from the University of California 
Riverside time series classification archive (UCR) [8]. 
They have found that 1-NN DTW and Rotation Forest 
classifiers offer the best results in most cases. Despite 
these findings, we have used a shallow ANN as a 
classifier, because it was very successful for our use-case. 
In a recent publication, Wang et al. showed that deep 
learning can be used for time series classification [9]. The 
authors implement both a fully convolutional network

and a very deep residual network and argue that with 
deep learning, heavy pre-processing or feature crafting is 
no longer necessary to achieve premium performance. 
They demonstrate their findings on the UCR data set.

Several authors have applied methods of time series 
classification for the task of condition monitoring and 
automated fault detection. Zhong et al. studied fault 
diagnosis for a gearbox based on Support Vector 
Machines for condition monitoring [10]. The data was 
obtained from an experimental test rig. Relevant features 
were extracted from the vibration signals of the gearbox 
with the wavelet packet transform as well as using time- 
statistical features. For an optimal set of features, the 
authors reported an accuracy of 100% on the test set. 
Shulian et al. presented an artificial neural network as a 
classifier for the task of fault diagnosis o f a gearbox [11]. 
The data was obtained from a physical gearbox and faults 
were classified according to their severity such as e.g. 
‘gentle fault’ or ‘bad fault’. Aydin et al. presented a 
fuzzy c-means algorithm that was used to distinguish 
between broken rotor bar faults and the healthy condition 
of an induction motor at four different operation speeds 
[12]. Recently, Yang et al. showed a time-efficient 
clustering-k-nearest-neighbors algorithm for the purpose 
of fault detection in gas sensor arrays [13]. The authors 
verified the performance o f the algorithm with a real gas 
sensor array experimental system with different kinds of 
faults. Campbell et al. examined the suitability of 
artificial neural networks to be used for condition 
monitoring of electric power transformers [14]. Sreejith 
et al. demonstrated an algorithm for the task of fault 
diagnosis of rolling element bearings using time-domain 
features and feedforward neural networks [15]. After the 
training stage, an accuracy of 100% to distinguish 
different states of the bearing was reported.

The references mentioned above were all evaluated with 
data obtained from physical experimental setups and 
made no use of VP. In general, most evaluations were 
performed on measured data. Li et al. used both VP as 
well as experimental studies for the task of gear multi
fault diagnosis [16]. The employed methods include the 
wavelet transform technique, Autoregressive models and 
Principal Component Analysis. With our work, we 
complement the existing research for automated fault 
detection in industrial systems.

3. Analysis Approach

3.1. Methodology
The automated fault detection framework was briefly 
introduced in the Introduction and Fig. 1 and is explained 
here in more detail. An extended schematic of the 
automated fault detection pipeline is displayed in Fig. 2.

We differentiate between the Virtual Domain, the 
Analysis Domain and the Physical Domain. The Virtual 
Domain contains the virtual prototype and data obtained 
from it, while the Physical Domain contains the physical 
counterpart that is modelled by the VP. Data output from
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both the Virtual and the Physical Domains is analyzed in 
the Analysis Domain. The arrows indicate the directions 
of information flow between the various stages within the 
whole system. The domains and their interconnections 
will be explained in the following, starting with the 
Virtual Domain (left part of Fig.2).

The System under Test (SuT) and test bench 
configurations are defined for the stimulation of the VP 
within the test bench. Upon stimulation, the VP produces 
time series as output. Depending on the parameters 
defined in the SuT and test bench configurations, the 
resulting time series have different shapes. In half o f the 
cases, a fault is injected during the simulation. The time 
series are then used as training data to train an artificial 
neural network (ANN) in the Analysis Domain. The 
ANN learns patterns in the time series and determines 
class labels to group similar time series into the same 
classes. The classes can either represent different motor 
states or, for the task of automated fault detection, 
different faults. Thus, after classification, a criticality 
analysis is performed to determine critical classes that 
indicate critical faults. The information obtained from the 
criticality analysis is used for decision making to 
conclude whether and which (safety) measures should be 
invoked to prevent system failures. These measures are 
then applied to the VP.

evaluation o f time series data produced by the physical 
system. Analogously to the different classes in the Virtual 
Domain, a criticality analysis can be performed for the 
system state of the physical system. Based on the results 
of the criticality analysis, the subsequent decision making 
and safety measure stages are analogous to the Virtual 
Domain as described above.

The employment o f VP for the simulation of different 
faults has several benefits. First, running a simulation is 
usually much faster than tracking the faults physically 
and for example, in case of degradation effects, gaining a 
sufficient amount of data in the physical world can take 
very long. Additionally, with the employment of VP, it is

d e f p a a ( t s , n ) :

f =  n p . z e r o s ( n ) # i n i t i a l i z e  s
d =  l e n ( t s ) / / n # s l i c e  l e n g t h
f o r  i  i n r a n g e ( 0 , n ) :

s l i c e  = t s [ i * d : ( i + 1 ) * d ]

f [ i ]  = n p .m e a n s l i c e )

r e t u r n  f

possible to simulate many different faults and observe 
their propagation through the system. Some faults are 
very rare, so the simulation of all the possible fault 
manifestations allows for their discovery and prediction 
in the physical world before they actually appear for the 
first time. In the best case scenario, the simulation of 
faults makes it unnecessary to obtain a data base of 
possible faults in the physical world in the first place. In 
that case, unexpected behavior of physical machinery 
actually becomes ‘expected’ and certain measures can be 
invoked depending on the fault.

In this work, we focus on the first five stages in the 
Virtual and Analysis Domains. Our use-case is a 
SystemC-based VP of an industrial motor control. The 
employed SystemC framework is described in Ref. [17]. 
The motor control model and its parameters are described 
in Section 4 in more detail. The output of the simulation 
is the engine speed over time which is a sequence of 
discrete time data, and can therefore be treated as a time 
series. We focus on the easiest case of fault detection 
with only two classes: ‘Pass’ if no fault is injected and 
‘Fail’ if a fault is injected. The resulting labeled engine 
speed data is then fed as input in the ANN that then 
distinguishes faulty and faultless classes. In the future, 
we intend to implement the next steps as displayed in 
Fig.2 such as the stages of criticality analysis, decision 
making and measures.

Fig. 2: Flowchart of the Virtual, Analysis and Physical 
Domains showing information flow and 
interconnections between the domains.

The proposed fault detection algorithm is evaluated on 
data obtained by the VP. The VP is a model of a physical 
system and the proposed algorithm can be used for 
condition monitoring in the Physical Domain (right part 
of Fig.2). The trained ANN can be used for the

3.2. Framework for time series classification
The data that is used for the task of condition monitoring 
has the nature of time series. A time series is a sequence 
of observations that are arranged according to the time of 
their outcome [18]. In this work, we stick to univariate 
time series, which have a real numbered value at each 
point in time. A time series may be interesting as a 
whole, if  it is the result o f the observation of a finite-time 
process. Another category of time series are single series
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of ongoing or online data such as temperature curves or 
stock value charts. The questions that pose themselves for 
those different categories of time series are somewhat 
differing, and in this paper we focus on the first kind. 
Thus, in the remainder of this paper, by ‘time series’ we 
specifically mean a univariate whole time series. We 
further assume that for a given problem, the data points 
are time series which all have the same length.

Since a time series consists of one numeric value per time 
step, the dimension of a space of possible time series is 
its length, which equals to the total duration multiplied by 
the temporal resolution. This number can easily become 
very large and make pointwise comparisons between time 
series very time-consuming. Furthermore, many 
classification algorithms require or benefit from each 
sample being a point in a relatively low dimensional 
space. Thus, while it is in principle possible to treat a 
time series as an element of a very high dimensional 
space, for many algorithms that try to ‘understand’ the 
nature of time series, it is necessary to reduce this 
dimension drastically. This can be done by extracting 
certain features from time series. Piecewise Aggregate 
Approximation (PAA) is a simple feature extraction 
method [19]. Given a time series t s  as a n u m p y  array, 
we extract n  features with the following Python 3 
implementation of PAA:

The features are the means of n  disjoint slices that cover 
the original time series. The calculated features are 
returned in an array f .

After the feature extraction step, the data is fed into a 
shallow artificial neural network with one hidden layer. 
The architecture o f the ANN is depicted in Fig. 3. The 
ANN has the structure affine ^  ReLU ^  affine ^  
softmax. The softmax layer turns the score from the last 
affine layer into the probability . Eventually,
'Fail' is predicted if p (' Fail ' ) is larger than 50% and 'Pass' 
is predicted if is below 50%.

Our current analysis stops at this stage after the 
separation of faulty from faultless time series. To follow  
the flowchart presented in Fig.2, a criticality analysis 
would be the next step and we intend to implement it in 
the future and thereby extend our automated fault 
detection framework. In the current scenario, we only 
consider two classes of ‘Pass’ or ‘Fail’ and do not 
distinguish different kinds of faults. For the task of a 
criticality analysis, such a simple ‘Pass’/ ’Fail’ threshold 
does not suffice. Instead, it is necessary to sort different 
faults in different fault classes. Different faults exhibit 
different behavior and thus, affect the system differently. 
The purpose of the criticality analysis is to determine 
which faults are the most critical ones and therefore, 
which measures must be invoked as a reaction.

implemented in SystemC. A schematic of the simulated 
control process and the fault injection is displayed in Fig.
4. The test bench orders a programmable logic controller 
(PLC) when and how fast to run the motor. Given this 
information, the PLC transmits timed instructions to a 
transaction-level modelling queue, which provides them 
the motor control unit. The motor control unit now 
determines the duty cycle for the motor, i.e. what 
percentage of a fixed time period the motor should be 
powered. It thus conveys the number of ‘on’ and the 
number of ‘off’ time steps within a period to a pulse 
width modulator (PWM). The PWM applies power to the 
motor for the number of ‘on’ time steps and then deprives 
the motor of current for the number of ‘off  steps. The 
PWM repeats this process until a new signal is received 
from motor control.

The output of the simulation is the motor's rotational 
speed over time, with subsequent time steps of s 
between t =  0s and t =  0.5 s. In Fig.5, an example for 
such a time series produced by specific engine 
parameters is shown. After 68ms, the motor is started and 
quickly overshoots to a speed of 305rpm at 74ms. 
Afterwards, the system oscillates until it levels out to a 
running speed of 197rpm. At t =  2 67ms, a load of 7Nm 
is attached to the motor. Subsequent to a short period of 
disturbance, the motor speed falls to its final plateau of 
186rpm. For this example, we disabled the feedback to 
the motor controller and therefore the closed-loop 
control.

Fig.6 shows the same motor with identical parameters, 
but this time a fault is induced into the process: at 
t =  2 08ms, a transient bit error inside the PWM is 
simulated. This causes the PWM to operate on the basis 
of an overlong

Fig. 3: Architecture of the considered artificial neural 
network.

4. Use-Case
The use-case for the proposed time series classification 
approach is a motor control model. This model is
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Fig. 4: Schematic of the simulated motor and the fault 
injection process

duty cycle. Aggregated over time, this means that it 
transmits an excessive amount o f power to the motor. 
After 200ms, at t = 407ms, the bit error is corrected and 
the PWM is controlled with the correct value. The fault 
injection process results in an immediate disturbance of 
the speed curve and eventually the speed being increased 
by a value of 12rpm when running with no load and by a 
value of 16rpm while the load is present. Additionally, 
the oscillation process that occurs when the load is 
attached changes slightly in form.

5. Experimental Results
The full data set consists of 8000 time series similar to 
those displayed in Fig.5 and Fig.6. The motor parameters 
that are modified to get this number are:

• The supply voltage (UDC): steps of 1.4 V  
between 126 V and 154 V

• The motor’s flux constant between 0.5 Vs and
0.6 Vs, step size of 0.005 Vs

• An amount of inertia to start the motor from 0.5 
gm2 to 1.5 gm2 with steps of 0.1 gm2

These parameter variations give a total of 4000 time 
series. For each parameter configuration, the simulation 
was run once without fault injection and once with an 
injected fault. For the cases where a fault was injected, it 
was done at a random time. This onset time for fault 
injection was drawn from a uniform distribution in the 
interval between 200ms and 300ms.

The structure of the data set thus contains 4000 tuples of 
time series with and without injected faults and is 
therefore very regular. This regularity could lead to 
problems of the learned classification heuristics of bad 
generalization to random and independent data. Similar 
concerns hold for the data generation part, where 
parameter spaces were discretized in regular grids. To 
break these symmetries, for each run, we only used a 
fraction of the data (500 time series for each) both for our 
training and validation sets. As in applications with real 
data there might be relatively few samples where a fault 
occurs, we chose a fault percentage o f 20% for training.

That means that from 500 time series used for training, 
100 contain faults and 400 do not contain faults.

To reduce the samples’ dimension of to a
more manageable number, we define and extract a 
desired

Fig. 5: Motor speed depending on the time without a 
fault being inserted (‘Pass’).

Fig. 6: Motor speed depending on the time with an 
inserted fault (‘Fail’).

number of features with the method of PAA described 
earlier. We use as the number of features. Fig. 7
shows features 10 and 15 for 25 samples with an injected 
fault and for 119 samples without a fault. While for those 
time series without fault injection, there is a clear linear 
correlation between the two regarded features, the 
positions of the samples with an injected fault are more 
scattered.

The previously described ANN architecture was 
implemented using the publicly available software 
package PyTorch. The width of the hidden layer was set 
to 40. For backpropagation, the Adam optimizer that is 
implemented in PyTorch as t o r c h . o p t i m . A d a m  was 
used [20]. The learning rate was set to 0.005. In Fig. 8, 
the training loss is shown. The results on the validation 
set are flawless: after 4 training epochs, we reach an 
accuracy of 100% on the validation set. The accuracy on 
the validation set is displayed in Fig.9. The training time 
for 4 epochs takes less than one second, which can be 
attributed to the heavily reduced size of the training set 
due to the feature extraction. We have thus shown that a
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shallow ANN can learn meaningful patterns from 
features extracted with PAA and distinguish between 
faulty and faultless time series.

It is important to discuss the limitations o f our approach. 
We considered the task of automated fault detection in 
the context of supervised learning. The disadvantage of 
this approach is that we have to rely on the availability of 
labeled data. As a next step, it would be interesting to 
tackle the automated fault detection problem with 
techniques from unsupervised learning. This way, a 
solution for cases when there is no labeled data could be 
offered.

6. Conclusion
We have demonstrated a methodology supporting 
automated fault detection using virtual prototyping. We 
have shown that methods from supervised machine 
learning are suitable for the task of automated fault 
detection. Based on the results from the automated fault 
detection, a criticality analysis can be performed to judge 
which measures must be triggered. We have evaluated 
our methods on data obtained from VP and, since the 
virtual

Fig. 7: Distribution of features 10 and 15  for 144 
samples

Fig. 8: Training loss for the training of the ANN

Fig. 9: Validation accuracy during the first training 
epochs of the ANN

prototype is a digital twin of a physical system, the 
trained network can be applied for condition monitoring 
of the physical machine.
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