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Abstract
1
 

The problem of stationary formation and the 

boundary conditions are formulated according the 

Faraday low. The problem is reduced to solving of  

a boundary-value problem for determining of the 

analytic function of a complex variable. In contrast 

to the plane problem the integral transformations of 

the analytic function are applied to determine the 

tension intensity. A spline functions approximation 

is fulfill, the algorithms for general solution of 

stationary axisymmetric problems are described. 

The results of the numerical solution with great 

accuracy are presented. 

1. Introduction  

Electrochemical dimensional machining (ECM) is one of 

the most promising ways of obtaining complex shape 

parts for hard work materials. In addition there is 

practically no force or heat effect on the workpiece with 

the ECM, electrode- tool (ET) practically does not wear 

out. However, since machining is carried out in a non-

contact mode and, unlike electro-erosion machining, the 

shape of the part is not equidistant to the surface of the 

ET, the formation calculation of the machined surface is a 

complex problem [1].  

The known methods for such problems solving, 

unfortunately, do not have sufficient accuracy and 

stability to the accumulation of round off errors in the 

calculation. 
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In this connection the goal of this paper is development of 

a numerical-analytical method and investigation of the 

characteristics of stationary processes. 

2. The problem statement  

2.1. Mathematical model of the process  

We consider the problem of the Laplace equation solving 

for a potential  inside a certain axisymmetric domain. 

The condition of constancy of  fulfills at the domain 

boundaries, and the form of the free boundary in the zone 

of high current densities must satisfy the stationarity 

condition, i.e. the equality of the projection of the speed 

of motion of the ET on the external normal to the 

machined surface and rate of electrochemical dissolution 

(Fig.1). The conditions on other parts of the machined 

surface are discussed below. 

Let us consider the stationary problem of machining with 

a point tool electrode. The meridional cross section of the 

interelectrode space (IES) is shown in Fig. 1. Here ADB 

is the boundary of the dissolved material, the point C is 

the point ET moving with the velocity Vet  to the 

machined surface. 

The potential  and the stream function  of an 

axisymmetric field are expressed in terms of function of a 

complex variable. It is analytical (satisfying the Cauchy-

Riemann conditions) in the domain Z = X + iY, whose 

shape coincides with the shape of the boundaries of the 

interelectrode space in the meridional section of the 

axisymmetric field with help of the formulas (the Polozhy 

integral transformations [2]): 
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where 000 iYXZ  , 000 iYXZ  . 

 

Fig 1. The diagram of IES for the stationary process  

Thus, the solution of the axisymmetric problem is 

reduced to solving a certain plane problem for the 

determination of an analytic function )(ZW  that 

represents the complex potential of some auxiliary plane 

field. The potential and the stream function of the 

axisymmetric field are obtained by integral 

transformations (1), (2) applied to the function 

f(Z)=dW/dZ [1]. 

The boundary conditions of the auxiliary plane problem 

are written in the form of integral equations which are 

obtained by equating of the right-hand sides (1) for 

equipotential boundaries to a constant or (2) for 

impermeable ones. The equality to zero of the imaginary 

or real part of f(Z) in the general case does not lead to 

equality to zero or a constant of the corresponding 

integrals. 

The values of the tangential and radial component of the 

tension are determined from (1) and (2) 
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where 01 iX   is certain point on symmetry axis x. 

We conformally map the domain corresponding to IES on 

the plane Z on the band  i (fig. 2,a). In this case 

the problem of determining of the function W (Z) 

analytical in the IES domain can be solved in a 

parametric form. So, we find W() and Z(). 

2.2. The boundary conditions  

The boundary condition for determining of the function 

W() is the condition for the anode equipotentiality. The 

image of the IES domain is a curvilinear half-band on the 

W plane (Fig. 2, b). 

a  

b  

Fig 2. IES images on the planes: a – parametric 

variable ; b – complex potential  

The boundary condition for determining of the function 

Z() is the stationarity condition. The Faraday law in the 

form of the Polubarinova-Galin equation [1, 3, 4] is used 

to obtain this condition in the axisymmetric case 
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where k is electrochemical constant;   is a current 

efficiency which is to be constant for a stationary process. 

Let us consider the coordinate system associated with the 

ET. Then the surface of the anode moves along with the 

tool electrode with the velocity  Vet . We move to the 

mobile system by replacing the variable 

   tVZtZ et 1,  in the formula (5) 
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If etet VV   then (6) takes the form [5] 
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Integrating (7) we have 
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It is more convenient to use dimensionless magnitudes in 

calculations 
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where l is character size;  lIU  , I is current;  is 

electrolyte conductivity. 

According to the Faraday low the quantity of dissolved 

metal is equal to 
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where Q is a charge flowing in a circuit during t, S is a 

cross-sectional square of the groove formed with 

deepening of the ET into the body of the workpiece 
2

RS  ; R is a radius of the groove. Then we obtain the 

formula 

 
etV

Ik
R
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2
,   

etV
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Rl
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


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2
2 . (9) 

And also the dimensionless velocity of the ET 1etv . In 

dimensionless variables the stationarity condition takes 

the form 

   0
22



y . (10) 

3. The method of problem solving  

The method of solving of axisymmetric problems for 

determining of forms that are not time dependent includes 

two main steps: the finding of a conformal mapping of a 

parametric variable area onto a physical plane and the 

determining of the potential and stream function using 

integral transforms of an analytic function. 

3.1. The conformal mapping  

The conformal mapping problem is solved as follows. It 

is convenient to choose a band of width 1/2 with the 

correspondence of the points indicated in fig. 2,a as the 

area of variation of the parametric variable =+i. 

The function mapping the plane  on the physical one is 

found as the sum 

    zzz 0 . (11) 

The quantity   0Re z  for  . The function 
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is the solution of the plane problem [1]. Then the 

boundary =+i0 is mapped onto the surface ADB, the 

boundary =+i/2 is mapped onto the cut ACB. The 

location of the point source is   020 iz . The 

derivatives 
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The function  z  is determined as follows. We find 

the solution on the boundary = at the node points 

m(m=0,…,n). The required values are   mm yz Im . 

We put   0Im  nz  for =n as  zIm  quickly (as 

exponent) decreases for . The values  zIm  at 

intermediate between the node points we find similarly to 

[6,7], using the cubic spline P, which has two continuous 

derivatives. 

To restore the function  z  we use the Schwarz formula 

[8] taking into account that  z  is analytic function 

that has like  0z  the only real values on the straight 

line Im=1/2. Analytically continuing the function  z  

to a band of unit width we get 
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The derivative  




d

dz
 is defined by differentiation (14) 
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Note, according to (12), (14)   020 iz , and 

   

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3.2. Potential and stream function 

determination  

The axisymmetric problem is solved by reducing it to an 

auxiliary plane problem. So, the area corresponding to the 

IES on the plane of the complex potential (Fig. 2, b) is 

conformally mapped onto the plane of the parametric 

variable  (Fig. 2, a). 

The solution consists of representing of the complex 

potential w() of the auxiliary plane problem and its 

derivatives in the form of sums 

    10 www ,  

   



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w
.  

where  



ch

0
i

f  is determined from the solution of 

the plane problem. 

We find the solution in the form of the function 

    



 1

1
w

f .   

This function must have the certain properties: its real 

part have to be an odd function of  for =+i0, 

 21 if   have to be real for =+i/2. Then it can be 

analytically continued to a band of unit width. Then 

Ref1(+i)=Ref1(+i0). 
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The required parameters are the values of the real part of 

the function   mm ff 1Re  at node points m, 

 nm ,...,1 . As far as f1 is the odd function of , 

  0Re 01 f  for =0=0. Let   0Re1 nf  for =n 

because  1f  rapidly (as exponent) decreases for . 

The values  1Re f  at intermediate between the node 

points is found using a cubic spline S(). 

The Schwartz formula [8] is applied to restore the 

function  1f . As the function  1Re f  is odd with 

respect to  then 
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It is necessary to integrate from infinity at applying of the 

Polozhy transformations in connection with the presence 

of feature of the function )(f  at point C. The 

expressions (1), (2) take the form 
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  (18) 

The condition of equipotentiality of the machined surface 

for 0 in the collocation method leads to the system of 

equations 
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Substituting in (17) the expression  1f  by the spline 

and the Schwarz formula, substituting the obtained 

expressions in (19), and using the Sokhotsky formula [8], 

we obtain the system of linear (with respect to the 

variables fm) equations 
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It is necessary to find partial derivatives 
j

m

f

F
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 to form 

this system of linear equations and to differentiate the 

spline S() under the integral sign. We obtain the unit 

spline Ej() differentiating the spline S() with respect to 

fj. Then 
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Thus, the system of equations (19) takes the form 
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The problem is solved by the collocation method. The 

required values are   mm yz Im ,   mm ff 1Re  at 

node points m (m=1,…, n1). (As it is shown above 

y0=yn=0, f0=fn=0). The system of nonlinear equations is 

constructed for determination of these parameters. It is 

required the fulfilling of equations (10), (20) for =m 

(m=1,…,n1). The maximum value of n is equal to 10. 

Thus, we have the nonlinear equations system that is 

solved by the Newton method with step regulation. 

4. Numerical results  

The shapes of machined surface are shown in Fig. 3-5 as 

well as the dependence of the curvature and strength on 

the ordinate of the machined surface in comparison with 

the plane case, the solution of which is obtained by the 

formula [1] 

 yx 

 cos2ln
1

. 

The asymptotic dependence for the plane problem is 

x
ey


 ~
2

1
, for the axisymmetric problem is 

x
ey




53.1
~

2

1
 (according to the computed data). 

 

Fig 3. The stationary shapes for the axisymmetric (the 

curve 1) and the plane (curve 2) problems  
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b  

Fig 4. The dependence of curvature on ordinate for 

the axisymmetric (the curve 1) and the plane (curve 2) 

problems  

b  

Fig 5. The dependence of dimensionless strength on 

ordinate for the axisymmetric (the curve 1) and the 

plane (curve 2) problems  

The values of solution parameters with error estimate and 

relative diffusion are in the table 1. Here xD, KD, ED are 

abscissa, dimensionless strength and curvature at the 

point D. The corresponding illustrations of estimates and 

numerical filtration are presented in Fig.6. 

Table 1. Results of the stationary axisymmetric problem 

Parameter Value Error 

estimate 

Relative 

diffusion 

xD 0.282186858398 110
-12 0.1 

ED 4/  110
-9 0.1 

KD 2.716660 110
-8 0.1 

 

The error estimate of the numerical solution is carried out 

by filtration of the calculations results [9-12]. The results 

of filtration are presented on a logarithmic scale in fig. 6. 

The ordinate axis shows the decimal logarithms of the 

absolute values of the obtained error estimates  lg , 

(the accuracy of the obtained data). The decimal 

logarithms of the segments number of n (which varies 

from 64 to 1339) are plotted on the abscissa axis. The 

values of anode strength DE  and the surface curvature 

DK  at the central point D are considered as the estimated 

parameters in Fig. 6. Digit 0 marks the estimated 

accuracy of the calculated data, digits 1, 2, ... marks the 

results of the first and second, etc., filtration. The ordinate 

difference between the two curves represents the 

logarithm of the ratio of the estimates for different 

filtration. This ratio is called relative diffusion. At the 

level of the 10th digit of the value DE , there is a 

violation of regularity caused by the round off error. In 

the curvature dependence the violation of regularity is 

observed at the level of the 9th digit, since the second 

derivative of the required function is used to determine it. 

a  

b  

Fig 6. The relative error estimate of axisymmetric 

problem solution: a – of  the strength DE  at the point 

D; б – of the curvature DK  at the point D  

4. Conclusion  

Thus, the numerical solution method of the problem of 

the stationary electrochemical machining by a point tool 

electrode in an axisymmetric formulation is proposed in 

this paper. The method is based on integral 

transformations of the analytical function. Numerical 

solution confirmed the high efficiency of the proposed 

method. Numerical values (with an error estimate) of 

geometrical and physical parameters are obtained. For 

example, the curvature of the boundary is calculated with 

an accuracy of 8 significant digits..:  
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