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Abstract’

The problem of stationary formation and the
boundary conditions are formulated according the
Faraday low. The problem is reduced to solving of
a boundary-value problem for determining of the
analytic function of a complex variable. In contrast
to the plane problem the integral transformations of
the analytic function are applied to determine the
tension intensity. A spline functions approximation
is fulfill, the algorithms for general solution of
stationary axisymmetric problems are described.
The results of the numerical solution with great
accuracy are presented.

1. Introduction

Electrochemical dimensional machining (ECM) is one of
the most promising ways of obtaining complex shape
parts for hard work materials. In addition there is
practically no force or heat effect on the workpiece with
the ECM, electrode- tool (ET) practically does not wear
out. However, since machining is carried out in a non-
contact mode and, unlike electro-erosion machining, the
shape of the part is not equidistant to the surface of the
ET, the formation calculation of the machined surface is a
complex problem [1].

The known methods for such problems solving,
unfortunately, do not have sufficient accuracy and
stability to the accumulation of round off errors in the
calculation.
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In this connection the goal of this paper is development of
a numerical-analytical method and investigation of the
characteristics of stationary processes.

2. The problem statement

2.1. Mathematical model of the process

We consider the problem of the Laplace equation solving
for a potential @ inside a certain axisymmetric domain.
The condition of constancy of @ fulfills at the domain
boundaries, and the form of the free boundary in the zone
of high current densities must satisfy the stationarity
condition, i.e. the equality of the projection of the speed
of motion of the ET on the external normal to the
machined surface and rate of electrochemical dissolution
(Fig.1). The conditions on other parts of the machined
surface are discussed below.

Let us consider the stationary problem of machining with
a point tool electrode. The meridional cross section of the
interelectrode space (IES) is shown in Fig. 1. Here ADB
is the boundary of the dissolved material, the point C is
the point ET moving with the velocity Vg to the
machined surface.

The potential ® and the stream function ¥ of an
axisymmetric field are expressed in terms of function of a
complex variable. It is analytical (satisfying the Cauchy-
Riemann conditions) in the domain Z = X + iY, whose
shape coincides with the shape of the boundaries of the
interelectrode space in the meridional section of the
axisymmetric field with help of the formulas (the Polozhy
integral transformations [2]):

G A=
=%

Simulation of stationary process of electrochemical axisymmetric shaping

124


https://e.mail.ru/compose/?mailto=mailto%3Alidav@mail.ru

%2 - @)
where Zo=>o+Y, Zo=Xo—6.
1 @

—= |C\D

X

Fig 1. The diagram of IES for the stationary process

Thus, the solution of the axisymmetric problem is
reduced to solving a certain plane problem for the

determination of an analytic function W(Z)  that
represents the complex potential of some auxiliary plane
field. The potential and the stream function of the
axisymmetric  field are obtained by integral
transformations (1), (2) applied to the function
f(Z)=dW/dz [1].

The boundary conditions of the auxiliary plane problem
are written in the form of integral equations which are
obtained by equating of the right-hand sides (1) for
equipotential boundaries to a constant or (2) for
impermeable ones. The equality to zero of the imaginary
or real part of f(Z) in the general case does not lead to
equality to zero or a constant of the corresponding
integrals.

The values of the tangential and radial component of the
tension are determined from (1) and (2)

where X1 +1i0 s certain point on symmetry axis x.

We conformally map the domain corresponding to IES on

the plane Z on the band X =S+ (fig. 2,a). In this case
the problem of determining of the function W (2)
analytical in the IES domain can be solved in a
parametric form. So, we find W(y) and Z(y).

2.2. The boundary conditions

The boundary condition for determining of the function
W(y) is the condition for the anode equipotentiality. The
image of the IES domain is a curvilinear half-band on the
W plane (Fig. 2, b).

v V3
A C B
i12
A D B
a 0 o]
WM
o ilg
D
4y
b 0 P

Fig 2. IES images on the planes: a — parametric
variable x; b — complex potential

The boundary condition for determining of the function
Z(y) is the stationarity condition. The Faraday law in the
form of the Polubarinova-Galin equation [1, 3, 4] is used
to obtain this condition in the axisymmetric case

Eods o

where k is electrochemical constant; ™ is a current
efficiency which is to be constant for a stationary process.

Let us consider the coordinate system associated with the
ET. Then the surface of the anode moves along with the
tool electrode with the velocity Ve . We move to the
mobile  system by replacing the  variable

AD)=Z0ANEE in the formula (5)

heE s o

If Vet =Vet| then (6) takes the form [5]

NI

Integrating (7) we have
\4%2@#%&@ ®

It is more convenient to use dimensionless magnitudes in
calculations
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where | is character size; U= |/(‘d), | is current; k is
electrolyte conductivity.

According to the Faraday low the quantity of dissolved
metal is equal to
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where Q is a charge flowing in a circuit during At, S is a
cross-sectional square of the groove formed with
deepening of the ET into the body of the workpiece

S = nR? ; R is a radius of the groove. Then we obtain the

formula
2 [k
——R-= 1
75 14y

And also the dimensionless velocity of the ET Vet =1. In
dimensionless variables the stationarity condition takes
the form
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3. The method of problem solving

The method of solving of axisymmetric problems for
determining of forms that are not time dependent includes
two main steps: the finding of a conformal mapping of a
parametric variable area onto a physical plane and the
determining of the potential and stream function using
integral transforms of an analytic function.

3.1. The conformal mapping

The conformal mapping problem is solved as follows. It
is convenient to choose a band of width 1/2 with the
correspondence of the points indicated in fig. 2,a as the
area of variation of the parametric variable y=c+iv.

The function mapping the plane y on the physical one is
found as the sum

20—z,

The quantity R&A00—0 for % = The function
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(12)

is the solution of the plane problem [1]. Then the
boundary x=c+i0 is mapped onto the surface ADB, the
boundary y=c+i/2 is mapped onto the cut ACB. The

location of the point source is zo(i/2):0_ The
derivatives

i <ol
k=3 @52@
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The function ZA(X) is determined as follows. We find
the solution on the boundary y=c at the node points

om(M=0,...,n). The required values are ! ""Z'A(qr):)&r

(13)

We put 1NZAGH)=0 for o=, as M2 (5) quickly (as

exponent) decreases for c—o. The values |mZA(G) at
intermediate between the node points we find similarly to
[6,7], using the cubic spline P, which has two continuous
derivatives.

To restore the function Za (X) we use the Schwarz formula
[8] taking into account that ZA(X) is analytic function
that has like Zo(%) the only real values on the straight

line Imy=1/2. Analytically continuing the function Za (X)
to a band of unit width we get

- shBwes
Wﬁ = (14)

dz
The derivative dT?(x) is defined by differentiation (14)
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Note, according to (12), (14) 20(i/2)=0 and

(16)

3.2. Potential and stream function
determination

The axisymmetric problem is solved by reducing it to an
auxiliary plane problem. So, the area corresponding to the
IES on the plane of the complex potential (Fig. 2, b) is
conformally mapped onto the plane of the parametric
variable y (Fig. 2, a).

The solution consists of representing of the complex
potential w(y) of the auxiliary plane problem and its
derivatives in the form of sums

VG-~
éc '
where fo(X)— chry is determined from the solution of

the plane problem.

We find the solution in the form of the function

fl()():aléc\i 0.

This function must have the certain properties: its real
part have to be an odd function of o for y=c+i0,
f1(+1/2) have to be real for y=o+i/2. Then it can be
analytically continued to a band of unit width. Then
Ref,(c+i)=Refi(c+i0).
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The required parameters are the values of the real part of
the function RE(TF)=F+ at node points op,
(M=1...n). As far as f, is the odd function of o,
Refi()=0 for 5=6,=0. Let Refi(h)=0 for o=o,
because fl(G) rapidly (as exponent) decreases for c—o.
The values Re fl(G) at intermediate between the node
points is found using a cubic spline S(o).

The Schwartz formula [8] is applied to restore the

function f1(t). As the function Re fi(c) is odd with
respect to o then

i S Y e

o '
It is necessary to integrate from infinity at applying of the
Polozhy transformations in connection with the presence

of feature of the function (o) at point C. The
expressions (1), (2) take the form
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The condition of equipotentiality of the machined surface
for y=oy in the collocation method leads to the system of
equations

'Fn_—'éé:ﬁ)_f@ze, m=L...n—1 (19)
Substituting in (17) the expression fl(G) by the spline
and the Schwarz formula, substituting the obtained
expressions in (19), and using the Sokhotsky formula [8],
we obtain the system of linear (with respect to the
variables f;) equations

. s L =
TE = Eogc’%l%j
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It is necessary to find partial derivatives ot to form

this system of linear equations and to differentiate the
spline S(c) under the integral sign. We obtain the unit
spline Ej(o) differentiating the spline S(o) with respect to
fi. Then

e ke #tem)

Thus, the system of equations (19) takes the form

N
ST -8B, m=0...N, (20)

ad;j
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The problem is solved by the collocation method. The

required values are 1MBNGF=Yr, Ref(F)—Tr at
node points o, (M=1,..., n=1). (As it is shown above
Yo=Yn=0, fo=f,=0). The system of nonlinear equations is
constructed for determination of these parameters. It is
required the fulfilling of equations (10), (20) for c=c,
(m=1,...,n=1). The maximum value of o, is equal to 10.

Thus, we have the nonlinear equations system that is
solved by the Newton method with step regulation.

4. Numerical results

The shapes of machined surface are shown in Fig. 3-5 as
well as the dependence of the curvature and strength on
the ordinate of the machined surface in comparison with
the plane case, the solution of which is obtained by the
formula [1]

—Lirpcosy
7T

The asymptotic dependence for the plane problem is

E—Y"eﬂx, for the axisymmetric problem is

1
; —Y~€l 53 (according to the computed data).
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Fig 3. The stationary shapes for the axisymmetric (the
curve 1) and the plane (curve 2) problems
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Fig 4. The dependence of curvature on ordinate for
the axisymmetric (the curve 1) and the plane (curve 2)
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Fig 5. The dependence of dimensionless strength on
ordinate for the axisymmetric (the curve 1) and the
plane (curve 2) problems
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The values of solution parameters with error estimate and
relative diffusion are in the table 1. Here xp, Kp, Ep are
abscissa, dimensionless strength and curvature at the
point D. The corresponding illustrations of estimates and
numerical filtration are presented in Fig.6.

Table 1. Results of the stationary axisymmetric problem

Parameter Value Error Relative
estimate | diffusion

Xp 0.282186858398 | +1.107 0.1

Ep Al +1.10° 0.1

Ko 2.716660 +1.10°® 0.1

The error estimate of the numerical solution is carried out
by filtration of the calculations results [9-12]. The results
of filtration are presented on a logarithmic scale in fig. 6.
The ordinate axis shows the decimal logarithms of the

absolute values of the obtained error estimates —IgA,
(the accuracy of the obtained data). The decimal
logarithms of the segments number of n (which varies
from 64 to 1339) are plotted on the abscissa axis. The

values of anode strength Ep and the surface curvature

Kb at the central point D are considered as the estimated
parameters in Fig. 6. Digit 0 marks the estimated
accuracy of the calculated data, digits 1, 2, ... marks the
results of the first and second, etc., filtration. The ordinate
difference between the two curves represents the

logarithm of the ratio of the estimates for different
filtration. This ratio is called relative diffusion. At the

level of the 10th digit of the value Ep, there is a
violation of regularity caused by the round off error. In
the curvature dependence the violation of regularity is
observed at the level of the 9th digit, since the second
derivative of the required function is used to determine it.

lgA

a 13 5 7 9 111315 17 19 21 23 25 27 29 31
lgA

10 « x, K K

W
8
x'x'xx' 2 1
6
0

4 A d

2 Trrrr 111 r.rrr.rrrrrrrr1r 11111111 17T
b 13 5 7 9 111315 17 19 21 23 25 27 29 31

Fig 6. The relative error estimate of axisymmetric
problem solution: a — of the strength Ep at the point
D; 6 — of the curvature Kp at the point D

4. Conclusion

Thus, the numerical solution method of the problem of
the stationary electrochemical machining by a point tool
electrode in an axisymmetric formulation is proposed in
this paper. The method is based on integral
transformations of the analytical function. Numerical
solution confirmed the high efficiency of the proposed
method. Numerical values (with an error estimate) of
geometrical and physical parameters are obtained. For
example, the curvature of the boundary is calculated with
an accuracy of 8 significant digits..:
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