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Abstract
1
 

The most commonly used method to determine the 

coefficients of the regression equation is the 

ordinary least squares method (OLS). Usage of 

OLS assumes low correlation of explanatory 

variables, independence and normal distribution of 

measurement errors. It is known that even minor 

violations of these assumptions drastically reduce 

the efficiency of estimates. Procedure of OLS-

estimation is unstable in the presence of large 

measurement errors, the estimators become 

inconsistent. Computation of autoregressive 

estimates is very complicated due to poor 

conditionality of equations system representing the 

necessary conditions to find the minimum sum of 

squares. An alternative to OLS is Least Absolute 

Deviations (LAD) method, which gives robust 

estimates even under violation of OLS assumptions. 

The paper considers two types of LAD: Weighted 

LAD and Generalized LAD. It is stated that 

interdependence of this methods allows to reduce 

the problem of computing GLAD-estimates to the 

iterative computation of WLAD-estimates. The 

latter are calculated by solving the corresponding 

linear programming problem. 

1. Introduction  

Consider the evaluation of the coefficients of the linear 

equation autoregression equation 
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here            are the values of the state variable, 

           are random errors,               are 

unknown coefficients. 

Ordinary Least Squares is the parametric method and it is 

the most commonly used method for estimation the 

coefficients of regression equation. To use OLS we need 

some strict assumptions. They include independence and 

normal distribution of errors and determinacy of 

explanatory variables [1-3]. Even minor violations of 

stated assumptions dramatically lower the efficiency of 

estimators. Note the instability of OLS estimation process 

in case of presence of large measurements errors. In this 

case, estimated coefficients become inconsistent. Finding 

estimates of autoregressive equation becomes 

substantially complicated due to poor conditionality of 

the system of equations representing necessary conditions 

for minimization of sum of squared deviations. 

Least Absolute Deviations method is an alternative 

method to OLS to obtain robust errors in case of violation 

of OLS assumptions [4]. We present two types of LAD: 

Weighted LAD and Generalized LAD. In the paper, we 

find the interrelation of these methods, and this fact 

allowed us to reduce the problem of determining GALD-

estimates to an iterative procedure with WALD-

estimators. The latter are calculated by solving the 

corresponding linear programming problem. A sufficient 

condition imposed on the loss function is found. It 

ensures the stability of GLAD-estimates of 

autoregressive models in terms of outliers. 

2. Weighted Least Absolute Deviations 

Method (WLAD) 

One can get the WLAD estimations of coefficients by 

solving the problem  
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  (2) 
In which 0, 1,2, ,tp t n   are some pre-defined 

factors. This task is the problem of a convex piecewise-

linear optimization. The introduction of additional 

variables is reduced problem (2) to a linear programming 

problem 
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   (3) 

This task has the canonical form of n+m+1 variables and 

3n constraints inequalities, including the conditions of 

non-negativity of the variables , 1,2, , .ju j n  

Weighted least absolute deviations (WLAD) can be used 

in the following cases. First, if there is reason to believe 

that the error variance is functionally dependent on one or 

more of the proportionality factors [2]. The problem here 

is the same as for the weighted OLS. The search 

procedure is ambiguous and weighting factors usually 

leads to multiple solutions. As a result, it is not clear how 

to use the weighting. 

Second, as shown in [2], the LAD-estimation of 

autoregression coefficients are not stable (not consistent) 

in the case of large errors. Usage of some functions from 

previous values of                  as weight 

coefficients   
 
proposed in [2].  Estimates in this case are 

consistent. 

The main difficulty in usage of GLAD is the absence of 

general formal rules of selection of weight coefficients. 

Therefore, this approach requires additional research. 

3. Generalized Least Absolute Deviations 

Method (GLAD) 

In [4] for a stable estimation of autoregression 

coefficients of the equation proposed by generalized least 

absolute deviations (GLMM), consisting in solving 

problems 
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where ρ(*) - a concave monotone increasing twice 

continuously differentiable function such that ρ(0) = 0. It 

is following from [4] that  should hold  

Theorem 1. All local minima of GLMM estimation for 

autoregression equation coefficients belong to the set 
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(5) 
Set U consists of solutions of system of n algebraic 

equations with m unknowns. It is obvious that the number 

of systems equals to m

nC . Therefore, solution of problem 

(4) may be reduced to the choice of the best m

nC solutions 

of algebraic equation systems. This approach can be used 

for 3m  . To compute GLAD-estimates for higher order 

dimension problems the interrelation between WLAD 

and GLAD-estimates have to be used from the theorem 

stated in [4]. 

Theorem 2. Let U – be the set of local extremums of the 

problem (4), then: 

(1) for each collection of weights  
1

0
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Theorems 1 and 2 let us, from the one hand, to reduce the 

problem (4) to the solution of the sequence of linear 

programming tasks and from the other hand, give us the 

way to compute the weight coefficients for the problem 

(2). 

4. Algorithm for computing GLAD-estimates 

Direct solution of problem (4) is based on the usage of 

theorem 1 and involves finding all node points and 

choosing one of them as a solution that ensures the 

minimum of the objective function.    

The brute force algorithm requires the solution of m

nC  

systems of linear equations of order m. For large values 

of n and m this leads to a significant computational 

complexity. An alternative approach is based on 

reduction of this problem to the sequence linear 

programming problems (3). Consider possible algorithms 

based on this approach. 

Algorithm GLAD-estimate 
Input: number of measures n;  

values  
0

n

t t
y


 of the dependent variable; function 

ρ(*).  

Output: estimation of coefficients 
1

m

j j
a


 of 

autoregressive equation  

Step 1. For all 1,2, ,t n  define : 1tp  ;  
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: 0k  ;  
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Step 2. For all 1,2, ,t n  define  ( ): k

t tp u ;  

k:=k+1; 
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Step 3. If 

   ( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) (

1 2 3 2 3
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go to step 2. 

Step 4. Stop. Target values are  ( ) ( ) ( )

2 3

( )

1 , , , k

m

k k ka a a a .  

Performance justification of this algorithm leads us to the 

following theorem. 

Theorem 3. If the loss function ρ(∗) is convex upward 

monotonically increasing twice continuously 

differentiable function on positive half-axis, such as 

ρ′(0)=M<∞, then the sequence  ( ) ( ) ( )

2 3

( )

1 , , , k

m

k k ka a a a , 

built by GLAD-estimate algorithm converges to the 

global extremum of the problem (4). 

Proof. The requirements imposed on the function ρ(*) 

implies that at any point ( )ku  an approximation (which is 

the majorant) for  

 ( )
( ) ( ) ( ) ( )( ) : ( ) ( ) ( ) ( )

ku k k k ku u u u u u u           

is defined, i.e.  

( ) ( )k ku v u   and   ( )( ) ( )kk u
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Therefore, in accordance with the algorithm 
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is monotonically decreasing and bounded below by zero, 

hence it has a unique limit point. An existence of limit 

point in the sequence   ( ) ( ) ( ) ( )
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follows from continuity and monotonicity of functions 

   . 

The limit point  1 2 3, , ,, ma a a a    , built by the 

algorithm is the global minimum, because for any set 

 1 2 3 ,, , ,  ma a a a  and any 1,2, ,t n  we have the 

following sequence of statements 
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Theorem 3 is proved. 

The advantage of the proposed algorithm compared to 

brute force algorithm is a quite high speed of 

convergence for the effective use of methods of linear 

programming. Indeed, the linear programming task in 

step 2 for iteration k is different from the corresponding 

problem in step k-1 only by the coefficients of the 

objective function which allows the initial basic solution 

at the current iteration to use the optimum basic solution 

of the previous iteration. 

5. Application features of the algorithm 

GLAD-estimate  

For the implementation of the algorithm GLAD-estimate 

a function     is required that meets the conditions of 

theorems 2 and 3. Examples of such functions are 

 

 

arctan , , 1 exp( ),
1

ln 1 , 1.
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Another feature for computing the estimates of 

autoregressive equation of high order is the great 

sensitivity of the algorithm to rounding errors. To resolve 

this problem one may use the error-free implementation 

of the basic arithmetic operations over the rationals [6-9] 

and the use of parallel algorithms. 

6. Conclusion 

Established linkage between Weighted Least Absolute 

Deviation and Generalized Least Absolute Deviation 

methods allowed us to reduce the problem of determining 

GLAD-estimates to an iterative procedure of WLAD-

estimates. The latter are calculated by solving the 

corresponding linear programming problem. The 

sufficient condition imposed on the loss function has 

found. It ensures the stability of GLAD-estimates of 

coefficients in autoregressive models in terms of outliers. 
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